论文标题

如何了解六源量子重力中β函数的结构?

How to understand the Structure of Beta Functions in Six-derivative Quantum Gravity?

论文作者

Rachwał, Lesław

论文摘要

我们广泛地激励了对更高衍生的重力的研究,尤其是我们强调哪些新量子具有具有六个导数的理论,其定义具有。接下来,我们讨论了精确的数学结构,该精确性在整个量子级beta函数上以前在通常协变的术语前获得的三个耦合函数与四个衍生物(Weyl Tensor Squared,RICCI Squarared,Ricci Squalar Squared和Gauss-Bonnet scalar)在$ D = 4 $ d = 4 $ spaceTime dimensions中以最少的六源量子重态进行了。这里的基本角色是通过在学期前面的耦合的比率$ x $,在原始动作中与Ricci标量在学期前的耦合。我们在多项式依赖性与分别在四衍生理论的情况下正式形式上$ x \ to+x \ to+\ infty $的模型中,多项式依赖性与增强的形式对称性和重量化性之间存在关系。

We extensively motivate the studies of higher-derivative gravities, and in particular we emphasize which new quantum features theories with six derivatives in their definitions possess. Next, we discuss the mathematical structure of the exact on the full quantum level beta functions obtained previously for three couplings in front of generally covariant terms with four derivatives (Weyl tensor squared, Ricci scalar squared and the Gauss-Bonnet scalar) in minimal six-derivative quantum gravity in $d=4$ spacetime dimensions. The fundamental role here is played by the ratio $x$ of the coupling in front of the term with Weyl tensors to the coupling in front of the term with Ricci scalars in the original action. We draw a relation between the polynomial dependence on $x$ and the absence/presence of enhanced conformal symmetry and renormalizability in the models where formally $x\to+\infty$ in the case of four- and six-derivative theories respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源