论文标题

GPUMD:用于构建准确的机器学习电势并进行高效的原子模拟的软件包

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

论文作者

Fan, Zheyong, Wang, Yanzhou, Ying, Penghua, Song, Keke, Wang, Junjie, Wang, Yong, Zeng, Zezhu, Xu, Ke, Lindgren, Eric, Rahm, J. Magnus, Gabourie, Alexander J., Liu, Jiahui, Dong, Haikuan, Wu, Jianyang, Chen, Yue, Zhong, Zheng, Sun, Jian, Erhart, Paul, Su, Yanjing, Ala-Nissila, Tapio

论文摘要

我们介绍了基于[Fan等人的Phys。 Rev. B 104,104309(2021)]及其在开源软件包GPUMD中实现。我们通过使用Chebyshev基础函数的线性组合以及通过以某些四体和五体贡献来扩展角度描述符的线性组合,从而提高了NEP模型的准确性。我们还详细介绍了对图形处理单元中NEP方法的有效实施以及用于构建NEP模型的工作流程,我们证明了它们在大规模原子模拟中的应用。通过与最先进的MLP相比,我们表明NEP方法不仅达到了高于平均水平的精度,而且在计算上也更加有效。这些结果表明,GPUMD软件包是一个有前途的工具,用于解决需要高度准确,大规模原子模拟的具有挑战性的问题。为了使用最小训练集启用MLP的构建,我们提出了一个基于预训练NEP模型的潜在空间的主动学习方案。最后,我们介绍了三个独立的Python软件包,Gpyumd,Calorine和Pynep,它们可以将GPUMD集成到Python Workfrows中。

We present our latest advancements of machine-learned potentials (MLPs) based on the neuroevolution potential (NEP) framework introduced in [Fan et al., Phys. Rev. B 104, 104309 (2021)] and their implementation in the open-source package GPUMD. We increase the accuracy of NEP models both by improving the radial functions in the atomic-environment descriptor using a linear combination of Chebyshev basis functions and by extending the angular descriptor with some four-body and five-body contributions as in the atomic cluster expansion approach. We also detail our efficient implementation of the NEP approach in graphics processing units as well as our workflow for the construction of NEP models, and we demonstrate their application in large-scale atomistic simulations. By comparing to state-of-the-art MLPs, we show that the NEP approach not only achieves above-average accuracy but also is far more computationally efficient. These results demonstrate that the GPUMD package is a promising tool for solving challenging problems requiring highly accurate, large-scale atomistic simulations. To enable the construction of MLPs using a minimal training set, we propose an active-learning scheme based on the latent space of a pre-trained NEP model. Finally, we introduce three separate Python packages, GPYUMD, CALORINE, and PYNEP, which enable the integration of GPUMD into Python workflows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源