论文标题
在密集的城市环境中的电子驾驶员骑手检测和分类
E-Scooter Rider Detection and Classification in Dense Urban Environments
论文作者
论文摘要
对弱势道路使用者的准确检测和分类是在异质交通中部署自动驾驶汽车的安全至关重要的要求。尽管外观与行人相似,但电子骑手骑手遵循运动的明显不同,并且可以达到高达45公里的速度。在城市环境中,随着车辆,交通基础设施和其他道路使用者在骑车之间导航时,发现电子驾驶者骑手的挑战会加剧,在城市环境中,部分遮挡的频率增加了。这可能导致电子诉讼骑手作为行人的未检测或错误分类,从而为自动驾驶汽车申请中的事故缓解和路径计划提供不准确的信息。这项研究引入了一种新的基准,用于部分遮挡的电子磁带骑手检测,以促进检测模型的客观表征。提出了一种新型的,闭塞感知的E型骑手检测方法,该方法比当前的现状相比,检测性能提高了15.93%。
Accurate detection and classification of vulnerable road users is a safety critical requirement for the deployment of autonomous vehicles in heterogeneous traffic. Although similar in physical appearance to pedestrians, e-scooter riders follow distinctly different characteristics of movement and can reach speeds of up to 45kmph. The challenge of detecting e-scooter riders is exacerbated in urban environments where the frequency of partial occlusion is increased as riders navigate between vehicles, traffic infrastructure and other road users. This can lead to the non-detection or mis-classification of e-scooter riders as pedestrians, providing inaccurate information for accident mitigation and path planning in autonomous vehicle applications. This research introduces a novel benchmark for partially occluded e-scooter rider detection to facilitate the objective characterization of detection models. A novel, occlusion-aware method of e-scooter rider detection is presented that achieves a 15.93% improvement in detection performance over the current state of the art.