论文标题
预先训练您的损失:简单的贝叶斯转移学习,并提供信息丰富的先验
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
论文作者
论文摘要
深度学习越来越多地朝着转移学习范式迈进,从而从源头任务的初始化开始,在下游任务上进行了大型基础模型。但是初始化包含有关源任务的相对较少的信息。取而代之的是,我们表明我们可以通过监督或自我监督的方法从源任务中学习高度信息的后代,然后这是修改下游任务上整个损失表面的先验的基础。这种简单的模块化方法可以在各种下游分类和分割任务上进行大量的性能增长和更多的数据效率学习,并作为标准预训练策略的倒入替代品。这些信息丰富的先验也可以保存供将来使用,类似于预先训练的权重,并且与贝叶斯深度学习通常使用的零均值的各向同性的非信息先验相反。
Deep learning is increasingly moving towards a transfer learning paradigm whereby large foundation models are fine-tuned on downstream tasks, starting from an initialization learned on the source task. But an initialization contains relatively little information about the source task. Instead, we show that we can learn highly informative posteriors from the source task, through supervised or self-supervised approaches, which then serve as the basis for priors that modify the whole loss surface on the downstream task. This simple modular approach enables significant performance gains and more data-efficient learning on a variety of downstream classification and segmentation tasks, serving as a drop-in replacement for standard pre-training strategies. These highly informative priors also can be saved for future use, similar to pre-trained weights, and stand in contrast to the zero-mean isotropic uninformative priors that are typically used in Bayesian deep learning.