论文标题
有什么伤害?受到治疗的负面影响的分数的急剧界限
What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment
论文作者
论文摘要
因果推论的基本问题 - 我们从未观察到反事实 - 使我们无法确定有多少人可能受到拟议干预措施的负面影响。如果在A/B测试中,一半用户单击(购买,观看,续订等),无论是暴露于标准体验A还是新的A或New One B中,则假设是因为变化不会影响任何人,因为变化对一半的用户群体产生了积极影响,从而对无轻便的一半进行了对单击的点击,同时又对另一半中的某些东西产生了负面影响。尽管不可知,但这种影响显然对决定进行更改的决定至关重要,无论是由于公平,长期,全身或操作考虑因素而引起的。因此,我们在给定数据(仅具有实验性观察的事实观察)的情况下,在给定数据的受到负面影响(和其他相关估计)上的分数(以及其他相关估计)上得出最紧密的(即尖锐)界限。自然,我们可以通过可观察到的协变量对个体进行分层的越多,就越来越紧密的边界。由于这些界限涉及必须从数据中学到的未知功能,因此我们开发出一种强大的推理算法,无论这些函数如何学习,这些算法几乎是有效的,当某些功能被误导时,这些函数的学习速度几乎是一致的,并且在大多数误解时仍然提供有效的保守界限。因此,我们的方法完全支持可靠的结论:它避免了假定的识别这种不可知的影响,重点是最佳界限,它允许对这些影响极大的推断。我们在模拟研究和对失业者的职业咨询案例研究中演示了我们的方法。
The fundamental problem of causal inference -- that we never observe counterfactuals -- prevents us from identifying how many might be negatively affected by a proposed intervention. If, in an A/B test, half of users click (or buy, or watch, or renew, etc.), whether exposed to the standard experience A or a new one B, hypothetically it could be because the change affects no one, because the change positively affects half the user population to go from no-click to click while negatively affecting the other half, or something in between. While unknowable, this impact is clearly of material importance to the decision to implement a change or not, whether due to fairness, long-term, systemic, or operational considerations. We therefore derive the tightest-possible (i.e., sharp) bounds on the fraction negatively affected (and other related estimands) given data with only factual observations, whether experimental or observational. Naturally, the more we can stratify individuals by observable covariates, the tighter the sharp bounds. Since these bounds involve unknown functions that must be learned from data, we develop a robust inference algorithm that is efficient almost regardless of how and how fast these functions are learned, remains consistent when some are mislearned, and still gives valid conservative bounds when most are mislearned. Our methodology altogether therefore strongly supports credible conclusions: it avoids spuriously point-identifying this unknowable impact, focusing on the best bounds instead, and it permits exceedingly robust inference on these. We demonstrate our method in simulation studies and in a case study of career counseling for the unemployed.