论文标题

使用模糊的输音箱进行动态合奏选择

Dynamic Ensemble Selection Using Fuzzy Hyperboxes

论文作者

Davtalab, Reza, Cruz, Rafael M. O., Sabourin, Robert

论文摘要

大多数动态的集合选择(DES)方法利用K-Neartiest邻居(KNN)算法来估计查询样品周围小区域中分类器的能力。但是,KNN对数据的局部分布非常敏感。此外,它还具有很高的计算成本,因为它需要将整个数据存储在内存中并在推理过程中执行多个距离计算。因此,对KNN算法的依赖最终限制了DES技术在大规模问题中的使用。本文提出了一个新的DES框架,该框架基于称为FH-DES的模糊输入。每个超级箱只能使用两个数据点(min和max Corners)表示一组样品。因此,基于HAPEBOX的系统将比其他动态选择方法具有较小的计算复杂性。此外,尽管采用了基于KNN的方法,但模糊的输音箱对局部数据分布不敏感。因此,样品的局部分布不会影响系统的性能。此外,在这项研究中,第一次使用错误分类的样本来估计分类器的能力,这在先前的融合方法中尚未观察到。实验结果表明,与最先进的动态选择方法相比,所提出的方法具有较高的分类精度,同时具有较低的复杂性。实施的代码可在https://github.com/redavtalab/fh-des_ijcnn.git上找到。

Most dynamic ensemble selection (DES) methods utilize the K-Nearest Neighbors (KNN) algorithm to estimate the competence of classifiers in a small region surrounding the query sample. However, KNN is very sensitive to the local distribution of the data. Moreover, it also has a high computational cost as it requires storing the whole data in memory and performing multiple distance calculations during inference. Hence, the dependency on the KNN algorithm ends up limiting the use of DES techniques for large-scale problems. This paper presents a new DES framework based on fuzzy hyperboxes called FH-DES. Each hyperbox can represent a group of samples using only two data points (Min and Max corners). Thus, the hyperbox-based system will have less computational complexity than other dynamic selection methods. In addition, despite the KNN-based approaches, the fuzzy hyperbox is not sensitive to the local data distribution. Therefore, the local distribution of the samples does not affect the system's performance. Furthermore, in this research, for the first time, misclassified samples are used to estimate the competence of the classifiers, which has not been observed in previous fusion approaches. Experimental results demonstrate that the proposed method has high classification accuracy while having a lower complexity when compared with the state-of-the-art dynamic selection methods. The implemented code is available at https://github.com/redavtalab/FH-DES_IJCNN.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源