论文标题

经过大量量化测量的参数估计的近似消息传递

Approximate Message Passing with Parameter Estimation for Heavily Quantized Measurements

论文作者

Huang, Shuai, Qiu, Deqiang, Tran, Trac D.

论文摘要

在各种应用中,设计有效的稀疏恢复算法可以处理噪声量化的测量值很重要 - 从雷达到源定位,频谱传感和无线网络。鉴于其高计算效率和最先进的性能,我们利用大约消息传递(AMP)框架来实现此目标。在AMP中,假定感兴趣的信号遵循具有未知参数的某些先前分布。以前的工作着重于查找通过最大化测量可能性最大化的参数 - 在涉及复杂概率模型的情况下,要解决的一个越来越困难的问题。在本文中,我们将参数视为未知变量,并通过AMP计算其后代。然后可以共同恢复感兴趣的参数和信号。与以前的方法相比,提出的方法导致了一个简单而优雅的参数估计方案,使我们能够直接与1位量化噪声模型一起使用。然后,我们进一步将方法扩展到一般的多位量化噪声模型。实验结果表明,所提出的框架对广泛的稀疏性和噪声水平的最先进方法提供了显着改善。

Designing efficient sparse recovery algorithms that could handle noisy quantized measurements is important in a variety of applications -- from radar to source localization, spectrum sensing and wireless networking. We take advantage of the approximate message passing (AMP) framework to achieve this goal given its high computational efficiency and state-of-the-art performance. In AMP, the signal of interest is assumed to follow certain prior distribution with unknown parameters. Previous works focused on finding the parameters that maximize the measurement likelihood via expectation maximization -- an increasingly difficult problem to solve in cases involving complicated probability models. In this paper, we treat the parameters as unknown variables and compute their posteriors via AMP. The parameters and signal of interest can then be jointly recovered. Compared to previous methods, the proposed approach leads to a simple and elegant parameter estimation scheme, allowing us to directly work with 1-bit quantization noise model. We then further extend our approach to general multi-bit quantization noise model. Experimental results show that the proposed framework provides significant improvement over state-of-the-art methods across a wide range of sparsity and noise levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源