论文标题
一类置换序列的循环和分歧轨迹
Cycles and divergent trajectories for a class of permutation sequences
论文作者
论文摘要
令$ f $为$ \ mathbb {n} _0 $从$ \ mathbb {n} _0 $中的排列。令$ x \ in \ mathbb {n} _0 $,然后考虑(有限或无限)序列$ s =(x,f(x),f(x),f^2(x),\ cdots)$。我们将$ s $称为排列序列。令$ d $是$ s $的元素集。如果$ d $是有限的集合,那么序列$ s $是一个周期,如果$ d $是无限的设置,则序列$ s $是一个不同的轨迹。 我们为定义的置换类别的循环和发散轨迹得出理论和计算界限。
Let $f$ be a permutation from $\mathbb{N}_0$ onto $\mathbb{N}_0$. Let $x\in\mathbb{N}_0$ and consider a (finite or infinite) sequence $s= (x,f(x),f^2(x),\cdots)$. We call $s$ a permutation sequence. Let $D$ be the set of elements of $s$. If $D$ is a finite set then the sequence $s$ is a cycle, and if $D$ is an infinite set the sequence $s$ is a divergent trajectory. We derive theoretical and computational bounds for cycles and divergent trajectories for a defined class of permutations.