论文标题

布朗电路的计算时间和热力学不确定性关系

Computation time and thermodynamic uncertainty relation of Brownian circuits

论文作者

Utsumi, Yasuhiro, Ito, Yasuchika, Golubev, Dimitry, Peper, Ferdinand

论文摘要

我们分析了一个基于令牌的布朗电路,在该电路中,布朗颗粒(即代币)通过利用热波动来随机移动,从而在与给定问题解决方案相对应的多语状态空间中搜索路径。该电路可以通过独特的解决方案评估布尔函数。但是,其计算时间随每次运行而变化。我们从数字上计算了由第一通道时间给出的布朗加尼亚加法器计算时间的概率分布,并分析了基于随机热力学的热力学不确定性关系和热力学成本。该计算可以在有限的时间内完成,而无需环境熵产生,即不会在环境中浪费热量。热力学成本是通过无错误的输出检测和计算周期的重置支付的。信噪比量化了计算时间的可预测性,并且通过混合结合进行了很好的估计,该结合由令牌检测数量的平方根近似。热力学成本在计算周期中的基于令牌的布朗电路中趋于较小。这与逻辑上可逆的布朗图灵机形成鲜明对比,在逻辑上,熵产生随状态空间的大小而对数增加,从而使混合界限恶化。

We analyze a token-based Brownian circuit in which Brownian particles, coined `tokens,' move randomly by exploiting thermal fluctuations, searching for a path in multi-token state space corresponding to the solution of a given problem. The circuit can evaluate a Boolean function with a unique solution. However, its computation time varies with each run. We numerically calculate the probability distributions of Brownian adders' computation time, given by the first-passage time, and analyze the thermodynamic uncertainty relation and the thermodynamic cost based on stochastic thermodynamics. The computation can be completed in finite time without environment entropy production, i.e., without wasting heat to the environment. The thermodynamics cost is paid through error-free output detection and the resets of computation cycles. The signal-to-noise ratio quantifies the computation time's predictability, and it is well estimated by the mixed bound, which is approximated by the square root of the number of token detections. The thermodynamic cost tends to play a minor role in token-based Brownian circuits in computation cycles. This contrasts with the logically reversible Brownian Turing machine, in which the entropy production increases logarithmically with the size of the state space, and thus worsens the mixed bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源