论文标题

ADA速记:一个数据分布自适应排名范式用于顺序建议

Ada-Ranker: A Data Distribution Adaptive Ranking Paradigm for Sequential Recommendation

论文作者

Fan, Xinyan, Lian, Jianxun, Zhao, Wayne Xin, Liu, Zheng, Li, Chaozhuo, Xie, Xing

论文摘要

大规模推荐系统通常由召回和排名模块组成。排名模块(又称排名者)的目标是精心区分用户对召回模块提出的候选项目的偏好。随着深度学习技术在各个领域的成功,我们目睹了主流排名者从传统模型发展为深神经模型。但是,我们设计和使用排名者的方式保持不变:离线训练模型,冻结参数并将其部署用于在线服务。实际上,候选项目由特定用户请求确定,其中基本分布(例如,不同类别的项目比例,流行或新项目的比例)在生产环境中彼此高度不同。经典的参数 - 冻结推理方式无法适应动态服务环境,从而使排名者的绩效受到损害。在本文中,我们提出了一种新的培训和推理范式,称为ADA-Ranker,以应对动态在线服务的挑战。根据当前项目候选者的数据分布,ADA级速率不是使用参数 - 冻结模型进行通用服务。我们首先从候选项目中提取分销模式。然后,我们通过模式调节排名,以使排名适合当前数据分布。最后,我们使用修订后的Ranker为候选名单评分。这样,我们将排名者的能力从全局模型适应到更好地处理当前任务的本地模型的能力。

A large-scale recommender system usually consists of recall and ranking modules. The goal of ranking modules (aka rankers) is to elaborately discriminate users' preference on item candidates proposed by recall modules. With the success of deep learning techniques in various domains, we have witnessed the mainstream rankers evolve from traditional models to deep neural models. However, the way that we design and use rankers remains unchanged: offline training the model, freezing the parameters, and deploying it for online serving. Actually, the candidate items are determined by specific user requests, in which underlying distributions (e.g., the proportion of items for different categories, the proportion of popular or new items) are highly different from one another in a production environment. The classical parameter-frozen inference manner cannot adapt to dynamic serving circumstances, making rankers' performance compromised. In this paper, we propose a new training and inference paradigm, termed as Ada-Ranker, to address the challenges of dynamic online serving. Instead of using parameter-frozen models for universal serving, Ada-Ranker can adaptively modulate parameters of a ranker according to the data distribution of the current group of item candidates. We first extract distribution patterns from the item candidates. Then, we modulate the ranker by the patterns to make the ranker adapt to the current data distribution. Finally, we use the revised ranker to score the candidate list. In this way, we empower the ranker with the capacity of adapting from a global model to a local model which better handles the current task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源