论文标题

适用于可重构智能表面辅助无线边缘网络的联合光谱学习

Federated Spectrum Learning for Reconfigurable Intelligent Surfaces-Aided Wireless Edge Networks

论文作者

Yang, Bo, Cao, Xuelin, Huang, Chongwen, Yuen, Chau, Di Renzo, Marco, Guan, Yong Liang, Niyato, Dusit, Qian, Lijun, Debbah, Merouane

论文摘要

越来越关注智能频谱传感,要求有效的培训和推理技术。在本文中,我们提出了一个新颖的联邦学习(FL)框架,称为联合频谱学习(FSL),该框架利用了可重新配置的智能表面(RISS)的好处,并克服了深层褪色渠道的不利影响。区分以来,我们通过利用每个RIS控制器的全面卷积神经网络(CNN)模型来赋予常规学习能力,从而帮助基站合作推断每个训练迭代开始时要求参与FL的用户。为了充分利用FL和RISS的潜力,我们应对三个技术挑战:RISS相位偏移配置,用户 - 磁性关联和无线带宽分配。由此产生的联合学习,无线资源分配和用户 - 范围的关联设计是一种优化问题,其目的是在考虑FL预测准确性的影响的同时最大化系统实用程序。在这种情况下,FL预测与资源优化性能的相互作用的准确性。特别是,如果训练有素的CNN模型的准确性恶化,资源分配的性能会恶化。提出的FSL框架是通过使用真实射频(RF)轨迹测试的,数值结果证明了其在频谱预测准确性和系统实用程序方面的优势:可以通过更多的RISS来实现更好的CNN预测准确性和FL系统实用程序。

Increasing concerns on intelligent spectrum sensing call for efficient training and inference technologies. In this paper, we propose a novel federated learning (FL) framework, dubbed federated spectrum learning (FSL), which exploits the benefits of reconfigurable intelligent surfaces (RISs) and overcomes the unfavorable impact of deep fading channels. Distinguishingly, we endow conventional RISs with spectrum learning capabilities by leveraging a fully-trained convolutional neural network (CNN) model at each RIS controller, thereby helping the base station to cooperatively infer the users who request to participate in FL at the beginning of each training iteration. To fully exploit the potential of FL and RISs, we address three technical challenges: RISs phase shifts configuration, user-RIS association, and wireless bandwidth allocation. The resulting joint learning, wireless resource allocation, and user-RIS association design is formulated as an optimization problem whose objective is to maximize the system utility while considering the impact of FL prediction accuracy. In this context, the accuracy of FL prediction interplays with the performance of resource optimization. In particular, if the accuracy of the trained CNN model deteriorates, the performance of resource allocation worsens. The proposed FSL framework is tested by using real radio frequency (RF) traces and numerical results demonstrate its advantages in terms of spectrum prediction accuracy and system utility: a better CNN prediction accuracy and FL system utility can be achieved with a larger number of RISs and reflecting elements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源