论文标题
协变纠缠楔横截面,平衡的部分纠缠和重力异常
Covariant entanglement wedge cross-section, balanced partial entanglement and gravitational anomalies
论文作者
论文摘要
观察到平衡的部分纠缠(BPE)给出了反射的熵和不同理论中各种混合状态的纠缠楔横截面(EWC)\ cite {wen:2021QGX,Camargo:Camargo:20222mme}。它可以在不同的纯化中进行计算,并且可以猜想独立于纯化。在本文中,我们在具有或没有重力异常的二维CFT中计算了二维CFT中的BPE和EWC,并发现它们与反射的熵一致。在协方差构型中,我们借助重力异常确定了净化系统的分区,我们将讨论扩展到拓扑大量重力(TMG)。我们提供了第一个处方,以评估与爱因斯坦重力以外的EWC相关的熵量,即从TMG中Chern-Simons项对EWC的校正。除了重力理论和几何形状外,还应考虑混合状态的进一步输入。
The balanced partial entanglement (BPE) was observed to give the reflected entropy and the entanglement wedge cross-section (EWCS) for various mixed states in different theories \cite{Wen:2021qgx,Camargo:2022mme}. It can be calculated in different purifications, and is conjectured to be independent from purifications. In this paper we calculate the BPE and the EWCS in generic covariant scenarios in two-dimensional CFTs with and without gravitational anomalies, and find that they coincide with the reflected entropy. In covariant configurations we determine the partition for the purifying system with the help of the gravitational anomalies, and we extend our discussion to topological massive gravity (TMG). We give the first prescription to evaluate the entropy quantity associated to the EWCS beyond Einstein gravity, i.e. the correction to the EWCS from the Chern-Simons term in TMG. Apart from the gravity theory and geometry, further input from the mixed state should be taken into account.