论文标题

用于安全半导体生命周期管理的数字双胞胎:前景和应用

Digital Twin for Secure Semiconductor Lifecycle Management: Prospects and Applications

论文作者

Shaikh, Hasan Al, Monjil, Mohammad Bin, Chen, Shigang, Asadizanjani, Navid, Farahmandi, Farimah, Tehranipoor, Mark, Rahman, Fahim

论文摘要

半导体供应链的广泛全球化已将许多不受信任的实体引入设备生命周期的不同阶段。更糟糕的是,设计的复杂性以及促进新一代综合电路的市场需求的越来越多的复杂性可以导致设计师无意间引入安全漏洞,或者验证工程师无法在设计生命周期早期检测到它们。这些被忽视或未被发现的漏洞可以通过随后的生命周期阶段通过不断扩大的多种硬件攻击来利用这些漏洞。因此,当需要确保整个生命周期的安全保证时,确定这些漏洞的出处的能力成为一个紧迫的问题。我们认为,如果对设备的安全策略存在恶意或无意的违反,则它将以整个生命周期的传统设计,验证和测试活动的异常形式反映出来。因此,可以通过从不同阶段收集的数据形成设备生命周期的数字模拟,称为数字双胞胎(DT),以确保设备的生命周期。在本文中,我们提出了对安全漏洞的相互交织关系与硅生命周期可用的数据相互交织的关系,并制定了AI驱动的DT框架的不同组件。所提出的DT框架利用这些关系和关系学习来实现向前和落后的信任分析功能,从而使整个生命周期的安全意识管理。最后,我们为实现数字双胞胎框架的实现提供了潜在的未来研究途径和挑战,以实现安全的半导体生命周期管理。

The expansive globalization of the semiconductor supply chain has introduced numerous untrusted entities into different stages of a device's lifecycle. To make matters worse, the increase complexity in the design as well as aggressive time to market requirements of the newer generation of integrated circuits can lead either designers to unintentionally introduce security vulnerabilities or verification engineers to fail in detecting them earlier in the design lifecycle. These overlooked or undetected vulnerabilities can be exploited by malicious entities in subsequent stages of the lifecycle through an ever widening variety of hardware attacks. The ability to ascertain the provenance of these vulnerabilities, therefore, becomes a pressing issue when the security assurance across the whole lifecycle is required to be ensured. We posit that if there is a malicious or unintentional breach of security policies of a device, it will be reflected in the form of anomalies in the traditional design, verification and testing activities throughout the lifecycle. With that, a digital simulacrum of a device's lifecycle, called a digital twin (DT), can be formed by the data gathered from different stages to secure the lifecycle of the device. In this paper, we put forward a realization of intertwined relationships of security vulnerabilities with data available from the silicon lifecycle and formulate different components of an AI driven DT framework. The proposed DT framework leverages these relationships and relational learning to achieve Forward and Backward Trust Analysis functionalities enabling security aware management of the entire lifecycle. Finally, we provide potential future research avenues and challenges for realization of the digital twin framework to enable secure semiconductor lifecycle management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源