论文标题

基尔乔夫·拉普拉斯(Kirchhoff Laplacian)的特征值界

Eigenvalue bounds of the Kirchhoff Laplacian

论文作者

Knill, Oliver

论文摘要

我们证明,对于{1,...,n}中的所有k,Gragchhoff laplacian K的每个特征值L(k)在上方由d(k)+d(k-1)界定。这里l(1),...,l(n)是K和d(1),..,d(n)的特征值的非份额列表,是一个不折扣的顶点度列表,具有附加假设d(0)= 0。我们还证明,通常,弱弱的Brouwer-Haemers下限D(k) +(n-k)都为Quiver的Kirchhoff矩阵的所有特征值l(k)保留。

We prove that each eigenvalue l(k) of the Kirchhoff Laplacian K of a graph or quiver is bounded above by d(k)+d(k-1) for all k in {1,...,n}. Here l(1),...,l(n) is a non-decreasing list of the eigenvalues of K and d(1),..,d(n) is a non-decreasing list of vertex degrees with the additional assumption d(0)=0. We also prove that in general the weak Brouwer-Haemers lower bound d(k) + (n-k) holds for all eigenvalues l(k) of the Kirchhoff matrix of a quiver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源