论文标题

基于奖励随机加强学习的多个领域网络空间攻击和防御游戏

Multiple Domain Cyberspace Attack and Defense Game Based on Reward Randomization Reinforcement Learning

论文作者

Zhang, Lei, Pan, Yu, Liu, Yi, Zheng, Qibin, Pan, Zhisong

论文摘要

现有的网络攻击和防御方法可以被视为游戏,但是大多数游戏仅涉及网络域,而不涉及多个域网络空间。为了应对这一挑战,本文提出了基于强化学习的多个领域网络空间攻击和防御游戏模型。我们定义多个域网络空间包括物理域,网络域和数字域。通过建立两个代理,分别代表攻击者和辩护人,后卫将在多个领域网络空间中选择多个领域动作,以通过增强学习来获得Defender的最佳奖励。为了提高防守者的防守能力,提出了基于奖励随机加强学习的游戏模型。当辩护人采取多个领域的防御行动时,奖励是随机给予的并进行线性分配,以找到更好的防御政策并提高国防成功率。实验结果表明,游戏模型可以有效地模拟多个域网络空间的攻击和防御状态,并且所提出的方法比DDPG和DQN具有更高的防御成功率。

The existing network attack and defense method can be regarded as game, but most of the game only involves network domain, not multiple domain cyberspace. To address this challenge, this paper proposed a multiple domain cyberspace attack and defense game model based on reinforcement learning. We define the multiple domain cyberspace include physical domain, network domain and digital domain. By establishing two agents, representing the attacker and the defender respectively, defender will select the multiple domain actions in the multiple domain cyberspace to obtain defender's optimal reward by reinforcement learning. In order to improve the defense ability of defender, a game model based on reward randomization reinforcement learning is proposed. When the defender takes the multiple domain defense action, the reward is randomly given and subject to linear distribution, so as to find the better defense policy and improve defense success rate. The experimental results show that the game model can effectively simulate the attack and defense state of multiple domain cyberspace, and the proposed method has a higher defense success rate than DDPG and DQN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源