论文标题

Flex:用于复杂知识图推理的特征逻辑嵌入框架

FLEX: Feature-Logic Embedding Framework for CompleX Knowledge Graph Reasoning

论文作者

Lin, Xueyuan, E, Haihong, Zhou, Gengxian, Hu, Tianyi, Ningyuan, Li, Sun, Mingzhi, Luo, Haoran

论文摘要

当前的最佳性能模型用于知识图推理(KGR)将几何学对象或概率分布引入嵌入实体,并将一阶逻辑(fol)查询引入低维矢量空间。可以将它们汇总为中心尺寸框架(点/框/锥,beta/gaussian分发等)。但是,它们具有有限的逻辑推理能力。而且很难概括到各种功能,因为中心和大小是一对一的约束,无法具有多个中心或尺寸。为了应对这些挑战,我们提出了一个新颖的KGR框架,名为“特征逻辑嵌入框架Flex”,这是第一个KGR框架,它不仅可以真正处理所有运行,包括连词,分离,脱节,否定等,而且支持各种功能空间。具体而言,特征逻辑框架的逻辑部分基于向量逻辑,该逻辑自然地对所有FOL操作进行了建模。实验表明,FLEX在基准数据集上的表现明显优于现有的最新方法。

Current best performing models for knowledge graph reasoning (KGR) introduce geometry objects or probabilistic distributions to embed entities and first-order logical (FOL) queries into low-dimensional vector spaces. They can be summarized as a center-size framework (point/box/cone, Beta/Gaussian distribution, etc.). However, they have limited logical reasoning ability. And it is difficult to generalize to various features, because the center and size are one-to-one constrained, unable to have multiple centers or sizes. To address these challenges, we instead propose a novel KGR framework named Feature-Logic Embedding framework, FLEX, which is the first KGR framework that can not only TRULY handle all FOL operations including conjunction, disjunction, negation and so on, but also support various feature spaces. Specifically, the logic part of feature-logic framework is based on vector logic, which naturally models all FOL operations. Experiments demonstrate that FLEX significantly outperforms existing state-of-the-art methods on benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源