论文标题
莫尔斯(Morse
Morse theory of Bestvina-Brady type for posets and matchings
论文作者
论文摘要
我们介绍了一种莫尔斯理论,以结合匹配和高度功能的Bestvina-Brady型poset。该理论将福尔曼(Forman)的离散摩尔斯(Morse)理论推广到常规CW复合物中,并将以$ h $的posets的形式扩展到莫尔斯(Morse)理论的先前结果到所有有限的posets。我们还开发了莫尔斯理论的相对版本,它使我们能够将POSET的拓扑拓扑与给定子室的拓扑进行比较。
We introduce a Morse theory for posets of Bestvina-Brady type combining matchings and height functions. This theory generalizes Forman's discrete Morse theory for regular CW-complexes and extends previous results on Morse theory for $h$-regular posets to all finite posets. We also develop a relative version of Morse theory which allows us to compare the topology of a poset with that of a given subposet.