论文标题

可交换的女性女性gm copulas

Exchangeable FGM copulas

论文作者

Blier-Wong, Christopher, Cossette, Hélène, Marceau, Etienne

论文摘要

Copulas是在随机向量的组件之间建模依赖性的强大工具。在两个维度工作时,一类众所周知的Copulas是Farlie-Gumbelmorgenstern(FGM)副群,因为它们的简单分析形状可以使封闭形式解决方案解决应用概率的许多问题。但是,高维FGM Copula的经典定义并不能直接理解副群参数对依赖性的影响,也不能直接理解对其可接受范围的几何理解。我们通过基于多元伯努利分布的概率方法研究FGM Copula来避免此问题。本文研究了高维的可兑换性FGM Copulas,这是FGM Copulas的子类。我们表明,可交换FGM的依赖性参数可以表示为有限数量的极端点的凸壳,并为不同可交换的FGM Copulas(包括最大和最小依赖性)建立部分订单。我们还利用概率解释来开发有效的采样和估计程序并提供模拟研究。在整个过程中,我们发现了copula参数的几何解释,这些参数有助于解码高维的可兑换性FGM Copulas的依赖性。

Copulas are a powerful tool to model dependence between the components of a random vector. One well-known class of copulas when working in two dimensions is the Farlie-GumbelMorgenstern (FGM) copula since their simple analytic shape enables closed-form solutions to many problems in applied probability. However, the classical definition of high-dimensional FGM copula does not enable a straightforward understanding of the effect of the copula parameters on the dependence, nor a geometric understanding of their admissible range. We circumvent this issue by studying the FGM copula from a probabilistic approach based on multivariate Bernoulli distributions. This paper studies high-dimensional exchangeable FGM copulas, a subclass of FGM copulas. We show that dependence parameters of exchangeable FGM can be expressed as convex hulls of a finite number of extreme points and establish partial orders for different exchangeable FGM copulas (including maximal and minimal dependence). We also leverage the probabilistic interpretation to develop efficient sampling and estimating procedures and provide a simulation study. Throughout, we discover geometric interpretations of the copula parameters that assist one in decoding the dependence of high-dimensional exchangeable FGM copulas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源