论文标题
新颖的光场成像装置,具有增强的光收集,用于冷原子云
Novel Light Field Imaging Device with Enhanced Light Collection for Cold Atom Clouds
论文作者
论文摘要
我们提出了一个光场成像系统,该系统可捕获单个拍摄的对象的多个视图。该系统旨在通过接受比等效景深的传统镜头更大的光线镜头来最大程度地收集。这是通过使用镜子填充虚拟对象的平面并充分利用可用的视野和景深来实现的。仿真结果表明,该设计能够对大小$ \ MATHCAL {O} $(1 mm $ $^3 $)的对象进行单拍断层扫描,从而重建了3二维(3D)分布,并且从任何单个视图角度均无法访问。特别是,对于原子干涉测量实验中使用的原子云,该系统可以重建具有$ \ MATHCAL {O} $(100 $μ$ M)的3D条纹图案。我们还使用3D打印的原型演示了该系统。该原型用于拍摄$ \ Mathcal {o} $(1 mm $ $^{3} $)大小的对象的图像,以及在单发图像上运行的3D重建算法成功地重建了内部功能。该原型还表明,该系统可以使用3D打印技术构建,因此可以在具有增强光收集或3D重建需求的实验中快速,成本效益地部署。原子干涉测量学中冷原子云的成像是这种新型成像设备的关键应用,在该设备中,增强的光收集,高深度和3D断层扫描重建可以提供新的手柄以表征原子云。
We present a light field imaging system that captures multiple views of an object with a single shot. The system is designed to maximize the total light collection by accepting a larger solid angle of light than a conventional lens with equivalent depth of field. This is achieved by populating a plane of virtual objects using mirrors and fully utilizing the available field of view and depth of field. Simulation results demonstrate that this design is capable of single-shot tomography of objects of size $\mathcal{O}$(1 mm$^3$), reconstructing the 3-dimensional (3D) distribution and features not accessible from any single view angle in isolation. In particular, for atom clouds used in atom interferometry experiments, the system can reconstruct 3D fringe patterns with size $\mathcal{O}$(100 $μ$m). We also demonstrate this system with a 3D-printed prototype. The prototype is used to take images of $\mathcal{O}$(1 mm$^{3}$) sized objects, and 3D reconstruction algorithms running on a single-shot image successfully reconstruct $\mathcal{O}$(100 $μ$m) internal features. The prototype also shows that the system can be built with 3D printing technology and hence can be deployed quickly and cost-effectively in experiments with needs for enhanced light collection or 3D reconstruction. Imaging of cold atom clouds in atom interferometry is a key application of this new type of imaging device where enhanced light collection, high depth of field, and 3D tomographic reconstruction can provide new handles to characterize the atom clouds.