论文标题
从低数据制度中的对话中发现工作流程
Workflow Discovery from Dialogues in the Low Data Regime
论文作者
论文摘要
基于文本的对话现在被广泛用于解决现实世界中的问题。如果已经知道解决方案策略,则有时可以将它们整理成工作流程,并用于指导人类或人工代理人通过帮助客户的任务。我们介绍了一种新的问题公式,我们称工作流发现(WD)对我们对正式工作流程可能尚不存在的情况感兴趣。尽管如此,我们还是希望发现解决特定问题的一组动作。我们还检查了这项新任务的序列到序列(SEQ2SEQ)方法。我们介绍了实验,其中我们从基于动作的对话数据集(ABCD)中从对话中提取工作流程。由于ABCD对话遵循已知的工作流程以指导代理商,因此我们可以评估使用基本真理序列提取此类工作流程的能力。我们提出并评估一种方法,该方法可以根据可能的行动进行模型,并表明使用此策略可以提高WD性能。当传输学习的模型以在数据集内外看不见的域时,我们的调理方法还可以改善零射击和少量WD性能。此外,在ABCD上,我们的SEQ2SEQ方法的修改变体在许多评估指标中在相关但不同的动作状态跟踪(AST)和级联对话成功(CDS)方面实现了最新的性能。
Text-based dialogues are now widely used to solve real-world problems. In cases where solution strategies are already known, they can sometimes be codified into workflows and used to guide humans or artificial agents through the task of helping clients. We introduce a new problem formulation that we call Workflow Discovery (WD) in which we are interested in the situation where a formal workflow may not yet exist. Still, we wish to discover the set of actions that have been taken to resolve a particular problem. We also examine a sequence-to-sequence (Seq2Seq) approach for this novel task. We present experiments where we extract workflows from dialogues in the Action-Based Conversations Dataset (ABCD). Since the ABCD dialogues follow known workflows to guide agents, we can evaluate our ability to extract such workflows using ground truth sequences of actions. We propose and evaluate an approach that conditions models on the set of possible actions, and we show that using this strategy, we can improve WD performance. Our conditioning approach also improves zero-shot and few-shot WD performance when transferring learned models to unseen domains within and across datasets. Further, on ABCD a modified variant of our Seq2Seq method achieves state-of-the-art performance on related but different problems of Action State Tracking (AST) and Cascading Dialogue Success (CDS) across many evaluation metrics.