论文标题
Schwarz引理用于横向谐波图的概括
A generalization of the Schwarz lemma for transversally harmonic maps
论文作者
论文摘要
在本文中,我们考虑了带有riemannian叶子的Riemannian歧管之间的横向和声图。就Bochner技术和亚拉普拉斯比较定理而言,我们能够建立施瓦茨引理的概括,以用于有界横向横向扩张的横向谐波图。此外,我们还获得了Schwarz型引理,用于Kähler叶之间的横向圆形图。
In this paper, we consider transversally harmonic maps between Riemannian manifolds with Riemannian foliations. In terms of the Bochner techniques and sub-Laplacian comparison theorem, we are able to establish a generalization of the Schwarz lemma for transversally harmonic maps of bounded generalized transversal dilatation. In addition, we also obtain a Schwarz type lemma for transversally holomorphic maps between Kähler foliations.