论文标题

近似协议的分布随机性

Distributed Randomness from Approximate Agreement

论文作者

Freitas, Luciano, Kuznetsov, Petr, Tonkikh, Andrei

论文摘要

随机化是设计分布式系统的关键工具。事实证明,共同的硬币原始性使系统成员能够就不可预测的随机数达成协议,这一点特别有用。但是,我们观察到,不可能在容易出现故障的异步系统中实现真正随机的常见硬币协议。 为了避免这种不可能,我们介绍了完美共同硬币的两个放松:(1)近似共同的硬币产生彼此靠近的随机数; (2)Monte Carlo Common Coin产生一个常见的随机数,其失败的可能性很小但非零的概率。在近似协议上建立原始协议之上,我们获得了这两个抽象的有效异步实现,可容忍多达三分之一的拜占庭过程。我们的协议不假定可信赖的设置或公共密钥基础架构,而是在协议运行时间内快速地收敛到完美的硬币。 通过在众所周知的共识算法中插入蒙特卡洛普通硬币的一项协议,我们设法使用$ O(n^3 \ log n)$(n^3 \ log n)$通信复杂性获得了二进制拜占庭协议协议协议协议协议,对自适应对手有弹性,并容忍了没有信任的设置的最佳$ f <n/3 $ f <n/3 $ flafere faility noterted设置。据我们所知,到目前为止在这种情况下达成的二进制拜占庭协议的最佳沟通复杂性是$ O(n^4)$。我们还展示了如何将近似共同硬币与灰色代码变体结合在一起,以解决与随机子集相交的有趣问题,这是我们在本文中介绍的。

Randomisation is a critical tool in designing distributed systems. The common coin primitive, enabling the system members to agree on an unpredictable random number, has proven to be particularly useful. We observe, however, that it is impossible to implement a truly random common coin protocol in a fault-prone asynchronous system. To circumvent this impossibility, we introduce two relaxations of the perfect common coin: (1) approximate common coin generating random numbers that are close to each other; and (2) Monte Carlo common coin generating a common random number with an arbitrarily small, but non-zero, probability of failure. Building atop the approximate agreement primitive, we obtain efficient asynchronous implementations of the two abstractions, tolerating up to one third of Byzantine processes. Our protocols do not assume trusted setup or public key infrastructure and converge to the perfect coin exponentially fast in the protocol running time. By plugging one of our protocols for Monte Carlo common coin in a well-known consensus algorithm, we manage to get a binary Byzantine agreement protocol with $O(n^3 \log n)$ communication complexity, resilient against an adaptive adversary, and tolerating the optimal number $f<n/3$ of failures without trusted setup or PKI. To the best of our knowledge, the best communication complexity for binary Byzantine agreement achieved so far in this setting is $O(n^4)$. We also show how the approximate common coin, combined with a variant of Gray code, can be used to solve an interesting problem of Intersecting Random Subsets, which we introduce in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源