论文标题

部分边界不是分位数

Partial frontiers are not quantiles

论文作者

Dai, Sheng, Kuosmanen, Timo, Zhou, Xun

论文摘要

分位数回归和部分边界是非参数分位数边界估计的两种不同的方法。在本文中,我们证明了部分边界不是分位数。凸和非凸技术均被考虑。为此,我们提出了凸订单-A $ $α$,作为凸变速器回归(CQR)和凸期预期回归(CER)的替代方案,以及两个新的NonConvex估计量:等值频率CQR和等渗cer作为订单$ $α$的替代方案。一项蒙特卡洛研究表明,部分边界估计器的性能相对较差,甚至可能违反分位数,尤其是在低分位数下。此外,模拟证据表明,估计分位数的间接期望方法通常优于直接分位数估计。我们进一步发现,由于其全球形状的约束,凸估计器的表现优于其非凸的估计值。使用美国电动发电厂的现实世界数据集提供了这些估计器的说明。

Quantile regression and partial frontier are two distinct approaches to nonparametric quantile frontier estimation. In this article, we demonstrate that partial frontiers are not quantiles. Both convex and nonconvex technologies are considered. To this end, we propose convexified order-$α$ as an alternative to convex quantile regression (CQR) and convex expectile regression (CER), and two new nonconvex estimators: isotonic CQR and isotonic CER as alternatives to order-$α$. A Monte Carlo study shows that the partial frontier estimators perform relatively poorly and even can violate the quantile property, particularly at low quantiles. In addition, the simulation evidence shows that the indirect expectile approach to estimating quantiles generally outperforms the direct quantile estimations. We further find that the convex estimators outperform their nonconvex counterparts owing to their global shape constraints. An illustration of those estimators is provided using a real-world dataset of U.S. electric power plants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源