论文标题

sface:良好的面部识别的乙状结肠限制的超球体损失

SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition

论文作者

Zhong, Yaoyao, Deng, Weihong, Hu, Jiani, Zhao, Dongyue, Li, Xian, Wen, Dongchao

论文摘要

由于大规模的培训数据库和迅速发展的损失功能,深层识别取得了巨大的成功。现有的算法致力于实现理想的想法:最小化阶层内距离并最大化阶层间距离。但是,他们可能会忽略一些质量低的培训图像,这些图像不应以这种严格的方式进行优化。考虑到训练数据库的不完美,我们建议可以以中等的方式优化阶层内和阶层间目标,以减轻过度拟合问题,并进一步提出一种新的损失功能,称为Sigmoid-Sigmoid-Sigmoid-Sypersented Hypersphere损失(SFACE)。具体而言,SFACE在超级球歧管上施加了阶级和类间约束,分别由两个Sigmoid梯度重尺度函数控制。 Sigmoid曲线精确地重新缩放了阶层和类间梯度,以便可以在某种程度上优化训练样品。因此,SFACE可以在减少级别的距离范围内进行干净的示例和防止标签噪声过度拟合的阶层之间取得更好的平衡,并贡献更强大的深层识别模型。在CASIA-WEBFACE,VGGFACE2和MS-CELEB-1M数据库中训练的模型的广泛实验,并在几个面部识别基准(例如LFW,Megaface和IJB-C数据库)上进行了评估,证明了SFACE的优势。

Deep face recognition has achieved great success due to large-scale training databases and rapidly developing loss functions. The existing algorithms devote to realizing an ideal idea: minimizing the intra-class distance and maximizing the inter-class distance. However, they may neglect that there are also low quality training images which should not be optimized in this strict way. Considering the imperfection of training databases, we propose that intra-class and inter-class objectives can be optimized in a moderate way to mitigate overfitting problem, and further propose a novel loss function, named sigmoid-constrained hypersphere loss (SFace). Specifically, SFace imposes intra-class and inter-class constraints on a hypersphere manifold, which are controlled by two sigmoid gradient re-scale functions respectively. The sigmoid curves precisely re-scale the intra-class and inter-class gradients so that training samples can be optimized to some degree. Therefore, SFace can make a better balance between decreasing the intra-class distances for clean examples and preventing overfitting to the label noise, and contributes more robust deep face recognition models. Extensive experiments of models trained on CASIA-WebFace, VGGFace2, and MS-Celeb-1M databases, and evaluated on several face recognition benchmarks, such as LFW, MegaFace and IJB-C databases, have demonstrated the superiority of SFace.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源