论文标题
HCFREC:通过归一化流与结构共识进行协作过滤以有效建议
HCFRec: Hash Collaborative Filtering via Normalized Flow with Structural Consensus for Efficient Recommendation
论文作者
论文摘要
用户项目互动的越来越多的数据量表使其对于有效有效的推荐系统而言具有挑战性。最近,基于哈希的协作过滤(HASH-CF)方法采用了有效的用户和项目的二进制表示的有效的锤击距离来加速建议。但是,Hash-CF通常会面临两个具有挑战性的问题,即对离散表示形式进行优化,并保留学习表示的语义信息。为了应对以上两个挑战,我们提出了HCFREC,这是一种新型的Hash-CF方法,以进行有效,有效的建议。具体而言,HCFREC不仅创新地引入了归一化流量,以通过有效拟合提出的近似混合物多元正态分布,连续但近似离散的分布来学习最佳哈希代码,而且还部署了群集一致性保留机制,以将语义结构保留在表示形式中,以提供更准确的建议。在六个现实世界数据集上进行的广泛实验证明了与最新方法相比,在有效性和效率方面,我们的HCFREC的优势。
The ever-increasing data scale of user-item interactions makes it challenging for an effective and efficient recommender system. Recently, hash-based collaborative filtering (Hash-CF) approaches employ efficient Hamming distance of learned binary representations of users and items to accelerate recommendations. However, Hash-CF often faces two challenging problems, i.e., optimization on discrete representations and preserving semantic information in learned representations. To address the above two challenges, we propose HCFRec, a novel Hash-CF approach for effective and efficient recommendations. Specifically, HCFRec not only innovatively introduces normalized flow to learn the optimal hash code by efficiently fit a proposed approximate mixture multivariate normal distribution, a continuous but approximately discrete distribution, but also deploys a cluster consistency preserving mechanism to preserve the semantic structure in representations for more accurate recommendations. Extensive experiments conducted on six real-world datasets demonstrate the superiority of our HCFRec compared to the state-of-art methods in terms of effectiveness and efficiency.