论文标题
关于扩展封闭的子类别的三角类别的本地化
Localization of triangulated categories with respect to extension-closed subcategories
论文作者
论文摘要
本文的目的是为三角形类别的本地化理论开发框架$ \ MATHCAL {C} $,也就是说,从给定的扩展封闭的子类别$ \ MATHCAL {N} $ of $ \ MATHCAL {C} $,我们与$ \ Mathcal {c c} $一起构建天然的结构, $ Q:\ Mathcal {C} \ to \ widetilde {\ Mathcal {C}} _ \ Mathcal {n} $满足合适的普遍性,统一了几种现象。确切地说,给定的子类别$ \ MATHCAL {N} $在且仅当本地化$ \ widetilde {\ Mathcal {c}} _ \ Mathcal {n} $对应于三角形类别时。在这种情况下,$ Q $不过是通常的Verdier商。此外,揭示了$ \ wideTilde {\ Mathcal {c}} _ \ Mathcal {n} $是一个确切的类别,并且仅当$ \ Mathcal {n} $满足生成条件时$ \ mathsf {cone}(\ Mathcal {n},\ Mathcal {n})= \ Mathcal {C} $。这样的(abelian)确切的本地化$ \ widetilde {\ Mathcal {c}} _ \ Mathcal {n} $提供了对某些同胞函数$ \ MATHCAL {C} \ to \ Mathsf {absf {absf {ab} $的$ t $ t $ t $ the $ the $ c的comologologic fuctors $ \ Mathcal {c} \ to $ the $ c的c c c} c c c} c} c} c c c} \ natccal of the $ the的c。 $ \ Mathcal {C} $由群集倾斜子类别$ \ Mathcal {n} $。
The aim of this paper is to develop a framework for localization theory of triangulated categories $\mathcal{C}$, that is, from a given extension-closed subcategory $\mathcal{N}$ of $\mathcal{C}$, we construct a natural extriangulated structure on $\mathcal{C}$ together with an exact functor $Q:\mathcal{C}\to\widetilde{\mathcal{C}}_\mathcal{N}$ satisfying a suitable universality, which unifies several phenomena. Precisely, a given subcategory $\mathcal{N}$ is thick if and only if the localization $\widetilde{\mathcal{C}}_\mathcal{N}$ corresponds to a triangulated category. In this case, $Q$ is nothing other than the usual Verdier quotient. Furthermore, it is revealed that $\widetilde{\mathcal{C}}_\mathcal{N}$ is an exact category if and only if $\mathcal{N}$ satisfies a generating condition $\mathsf{cone}(\mathcal{N},\mathcal{N})=\mathcal{C}$. Such an (abelian) exact localization $\widetilde{\mathcal{C}}_\mathcal{N}$ provides a good understanding of some cohomological functors $\mathcal{C}\to\mathsf{Ab}$, e.g., the heart of $t$-structures on $\mathcal{C}$ and the abelian quotient of $\mathcal{C}$ by a cluster-tilting subcategory $\mathcal{N}$.