论文标题

像医生一样做:我们如何设计使用域知识诊断气胸的模型

Do it Like the Doctor: How We Can Design a Model That Uses Domain Knowledge to Diagnose Pneumothorax

论文作者

Smith, Glen, Zhang, Qiao, MacLellan, Christopher

论文摘要

用于医学成像的计算机辅助诊断是一个经过良好研究的领域,旨在为医生提供实时决策支持系统。这些系统试图在各种图像诊断技术中检测和诊断多种医疗状况,包括超声,X射线,MRI和CT。在为这些系统设计AI模型时,我们通常会受到很少的培训数据的限制,并且对于极少数医疗状况,很难获得积极的例子。这些问题通常会导致模型表现不佳,因此我们需要一种方法来根据这些局限性设计AI模型。因此,我们的方法是将专家领域知识纳入AI模型的设计中。我们通过对肺超声诊断的解释进行了培训的医生进行了两项定性的思维研究,以提取有关气胸病的相关领域知识。我们提取了用于诊断的关键特征和程序的知识。有了这些知识,我们采用了知识工程概念来为AI模型设计提出建议,以自动诊断气胸。

Computer-aided diagnosis for medical imaging is a well-studied field that aims to provide real-time decision support systems for physicians. These systems attempt to detect and diagnose a plethora of medical conditions across a variety of image diagnostic technologies including ultrasound, x-ray, MRI, and CT. When designing AI models for these systems, we are often limited by little training data, and for rare medical conditions, positive examples are difficult to obtain. These issues often cause models to perform poorly, so we needed a way to design an AI model in light of these limitations. Thus, our approach was to incorporate expert domain knowledge into the design of an AI model. We conducted two qualitative think-aloud studies with doctors trained in the interpretation of lung ultrasound diagnosis to extract relevant domain knowledge for the condition Pneumothorax. We extracted knowledge of key features and procedures used to make a diagnosis. With this knowledge, we employed knowledge engineering concepts to make recommendations for an AI model design to automatically diagnose Pneumothorax.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源