论文标题
来自M31的环境培养基的伽马射线
Gamma-rays from the circumgalactic medium of M31
论文作者
论文摘要
我们讨论了仙女座(CGM)在仙女座(M31)中从宇宙射线(CR)中生产的$γ$ rays(M31),鉴于最近发现了$ \ sim 5.5-120 $ kpc的环形区域的$γ$ rays。我们认为由于M31磁盘中的恒星形成而导致的CRS加速,由于流出和CR扩散,该磁盘通过对流而提升到CGM。 M31碟片中星形形成活动触发的大量气体引起的对流时间尺度可比较($ \ sim $ gyr)与扩散时间尺度,具有扩散系数$ \ ge10^{29} $ CM $^2 $^2 $^2 $ s $ s $ s $^{ - 1} $ cr Protons for cr Protons for Energy propent propent propent prop for Sim $ \ sim propent the Sim $ \ gev,该$ \ g ev是GEED。我们表明,来自Cosmic Ray(CR)电子的$γ$ rays的Leptonic起源很困难,因为反康普顿时间尺度($ \ sim $ myr)远低于Advection时间尺度($ \ sim $ gyr)达到$ 120 $ kpc。在CGM中以$ \ sim100-120 $ kpc在CGM中加速的CR电子援引CR电子无济于事,因为它会导致未观察到的分散X射线功能。因此,我们在数值两流体(热 + CR)流体动力学模拟的帮助下,通过CR质子和CGM气体之间的HADRONIC相互作用研究了$γ$砂的产生。我们发现,这些机制的组合与最后$ \ sim $ gyr中的M31中的恒星形成过程有关,以及扩散和望子的相互作用,可以解释M31 CGM的观察到的通量。
We discuss the production of $γ$-rays from cosmic rays (CR) in the circumgalactic medium (CGM) of Andromeda (M31) in light of the recent detection of $γ$-rays from an annular region of $\sim 5.5-120$ kpc away from the M31 disc. We consider the CRs accelerated as a result of the star-formation in the M31 disk, which are lifted to the CGM by advection due to outflow and CR diffusion. The advection time scale due to bulk flow of gas triggered by star formation activity in the M31 disc is comparable ($\sim$ Gyr) to the diffusion time scale with diffusion coefficient $\ge10^{29}$ cm$^2$ s$^{-1}$ for the propagation of CR protons with energy $\sim 412$ GeV that are responsible for the highest energy photons observed. We show that a leptonic origin of the $γ$-rays from cosmic ray (CR) electrons has difficulties, as the inverse Compton time scale ($\sim$Myr) is much lower than advection time scale ($\sim$Gyr) to reach $120$ kpc. Invoking CR electrons accelerated by accretion shocks in the CGM at $\sim100-120$ kpc does not help since it would lead to diffuse X-ray features that are not observed. We, therefore, study the production of $γ$-rays via hadronic interaction between CR protons and CGM gas with the help of numerical two-fluid (thermal + CR) hydrodynamical simulation. We find that a combination of these mechanisms, that are related to the star formation processes in M31 in the last $\sim $ Gyr, along with diffusion and hadronic interaction, can explain the observed flux from the CGM of M31.