论文标题
威尔逊表面的量子场理论表示:ii更高的拓扑结合轨道模型
Quantum field theoretic representation of Wilson surfaces: II higher topological coadjoint orbit model
论文作者
论文摘要
这是一系列两篇论文中的第二份,该论文专门针对严格的高规格理论中威尔逊表面的分区函数实现。基于派生的几何框架,提出了拓扑旋转轨道量子机械模型计算线的较高的2-维对应物,该模型是衍生的几何框架,该框架显示了其在4-维更高的Chern-Chern-Simons理论中的有用性。 描述了它的对称性。在功能积分框架中分析了其量化。提供了有力的证据表明,该模型确实确实是Wilson表面的分区功能实现的基础。解释了消失的假弯曲条件的出现,并显示了平坦的高量规场的同质不变性。该模型的哈密顿式配方进一步提供,突出了该模型与同伴论文中开发的Kirillov-Kostant-Souriau理论的紧密关系。
This is the second of a series of two papers devoted to the partition function realization of Wilson surfaces in strict higher gauge theory. A higher 2--dimensional counterpart of the topological coadjoint orbit quantum mechanical model computing Wilson lines is presented based on the derived geometric framework, which has shown its usefulness in 4--dimensional higher Chern--Simons theory. Its symmetries are described. Its quantization is analyzed in the functional integral framework. Strong evidence is provided that the model does indeed underlie the partition function realization of Wilson surfaces. The emergence of the vanishing fake curvature condition is explained and homotopy invariance for a flat higher gauge field is shown. The model's Hamiltonian formulation is further furnished highlighting the model's close relationship to the derived Kirillov-Kostant-Souriau theory developed in the companion paper.