论文标题
第一原理的表明分子系统中的非绝热性电子泵送
First-Principles Demonstration of Non-adiabatic Thouless Pumping of Electrons in A Molecular System
论文作者
论文摘要
我们证明了使用第一原理理论在浮雕工程框架内的转基聚乙烯中电子的非绝热泵送。我们确定量化泵在驱动电场方面具有操作的机制,以期为时间依赖的哈密顿量。通过在实时时间依赖性密度函数理论模拟中采用时间依赖性的最大局部局部化函数,我们将绕组数(拓扑不变)连接到对量化泵送的分子级别的理解。尽管泵送动力学构成了代表双键和单键的Wannier函数的相对运动,但由于双键电子的数量越大,所得电流是单向的。使用称为动态过渡轨道的量规不变的公式,根据粒子孔激发,获得了非平衡动力学的替代视点。发现单个时间依赖的过渡轨道在很大程度上是对观察到的量化泵的负责。在此表示中,泵浦动力学在该单轨道的动力学中表现出来,因为它从平衡处的π键轨道特征发生变化,以在驾驶周期中获得共振和抗抗反感性。这项工作证明了在扩展分子系统中非绝热拓扑状态的浮雕工程,为新量子材料阶段实现实现铺平了道路。
We demonstrate nonadiabatic Thouless pumping of electrons in trans-polyacetylene in the framework of Floquet engineering using first-principles theory. We identify the regimes in which the quantized pump is operative with respect to the driving electric field for a time-dependent Hamiltonian. By employing the time-dependent maximally localized Wannier functions in real-time time-dependent density functional theory simulation, we connect the winding number, a topological invariant, to a molecular-level understanding of the quantized pumping. While the pumping dynamics constitutes the opposing movement of the Wannier functions that represent both double and single bonds, the resulting current is unidirectional due to the greater number of double-bond electrons. Using a gauge-invariant formulation called dynamical transition orbitals, an alternative viewpoint on the nonequilibrium dynamics is obtained in terms of the particle-hole excitation. A single time-dependent transition orbital is found to be largely responsible for the observed quantized pumping. In this representation, the pumping dynamics manifests itself in the dynamics of this single orbital as it undergoes changes from its π bonding orbital character at equilibrium to acquiring resonance and antibonding character in the driving cycle. The work demonstrates the Floquet engineering of the nonadiabatic topological state in an extended molecular system, paving the way for experimental realization of the new quantum material phase.