论文标题

识别模型从具有神经odes的部分观察中学习动力学

Recognition Models to Learn Dynamics from Partial Observations with Neural ODEs

论文作者

Buisson-Fenet, Mona, Morgenthaler, Valery, Trimpe, Sebastian, Di Meglio, Florent

论文摘要

从实验数据中识别动态系统是一项特别艰巨的任务。先验知识通常会有所帮助,但是这些知识的程度随应用程序而有所不同,通常需要定制模型。神经普通微分方程可以写为系统识别的灵活框架,并且可以融合各种物理见解,从而为所得的潜在空间提供物理解释性。但是,在部分观察的情况下,数据点不能直接映射到ode的潜在状态。因此,我们建议设计识别模型,特别是受非线性观察者理论的启发,以将部分观察结果与潜在状态联系起来。我们证明了在数值模拟和机器人外骨骼的实验数据集上提出的方法的性能。

Identifying dynamical systems from experimental data is a notably difficult task. Prior knowledge generally helps, but the extent of this knowledge varies with the application, and customized models are often needed. Neural ordinary differential equations can be written as a flexible framework for system identification and can incorporate a broad spectrum of physical insight, giving physical interpretability to the resulting latent space. In the case of partial observations, however, the data points cannot directly be mapped to the latent state of the ODE. Hence, we propose to design recognition models, in particular inspired by nonlinear observer theory, to link the partial observations to the latent state. We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源