论文标题

机器人群的强大最佳密度控制

Robust optimal density control of robotic swarms

论文作者

Sinigaglia, Carlo, Manzoni, Andrea, Braghin, Francesco, Berman, Spring

论文摘要

在本文中,我们为机器人群的平均场模型提出了一种计算高效,可靠的密度控制策略。我们制定了一个静态最佳控制问题(OCP),该问题计算机器人速度场,该机器人速度场将群驱动到目标平衡密度,并在最初条件下存在瞬态扰动和不确定性的情况下证明受控系统的稳定性。密度动力学通过线性椭圆形扩散方程来描述,其中对照在对流术语中双重进入。通过整体约束来确保状态问题的适当性。我们通过将状态约束嵌入到状态动力学的弱公式中来证明最佳控制的存在。所得的控制场取决于空间,不需要机器人或昂贵的密度估计算法之间的任何通信。根据原始和双重系统的属性,我们首先提出了一种适应状态约束的方法。利用状态动力学和相关控件的属性,我们构建了一个修改的动态OCP,以加快相关静态问题的目标平衡密度的收敛性。然后,我们表明静态和动态OCP的有限元离散化遗传了其无限二维公式的结构和几种有用属性。最后,我们通过障碍物和外部速度场的情况模拟了控制方法的有效性。

In this paper, we propose a computationally efficient, robust density control strategy for the mean-field model of a robotic swarm. We formulate a static optimal control problem (OCP) that computes a robot velocity field which drives the swarm to a target equilibrium density, and we prove the stability of the controlled system in the presence of transient perturbations and uncertainties in the initial conditions. The density dynamics are described by a linear elliptic advection-diffusion equation in which the control enters bilinearly into the advection term. The well-posedness of the state problem is ensured by an integral constraint. We prove the existence of optimal controls by embedding the state constraint into the weak formulation of the state dynamics. The resulting control field is space-dependent and does not require any communication between robots or costly density estimation algorithms. Based on the properties of the primal and dual systems, we first propose a method to accommodate the state constraint. Exploiting the properties of the state dynamics and associated controls, we then construct a modified dynamic OCP to speed up the convergence to the target equilibrium density of the associated static problem. We then show that the finite-element discretization of the static and dynamic OCPs inherits the structure and several useful properties of their infinite-dimensional formulations. Finally, we demonstrate the effectiveness of our control approach through numerical simulations of scenarios with obstacles and an external velocity field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源