论文标题
treenhance:低光图像增强的树搜索方法
TreEnhance: A Tree Search Method For Low-Light Image Enhancement
论文作者
论文摘要
在本文中,我们介绍了Treenhance,这是一种可用于提高数字图像质量的低光图像增强功能的自动方法。该方法结合了树搜索理论,尤其是蒙特卡洛树搜索(MCTS)算法,并深入钢筋学习。 treenhance作为输入效果,可作为输出其增强版本以及用于获得它的图像编辑操作的顺序产生。在训练阶段,该方法反复交替交替使用两个主要阶段:一个生成阶段,其中MCT的修改版本探索了图像编辑操作的空间,并选择了最有希望的序列,以及一个优化阶段,其中神经网络的参数(实施增强策略)进行了更新。 提出了两种不同的推理解决方案,以增强新图像:一个基于MCT,更准确,但时间和记忆消耗更多;另一个直接采用了学习的政策,并且更快,但精确稍差。作为进一步的贡献,我们提出了一种指导的搜索策略,该策略“逆转”了照片编辑器应用于给定输入图像的增强过程。与最先进的其他方法不同,Treenhance不会对图像分辨率构成任何限制,并且可以在各种情况下使用最小的调整。我们在两个数据集上测试了该方法:低光数据集和Adobe五千数据集从定性和定量观点中获得良好的结果。
In this paper we present TreEnhance, an automatic method for low-light image enhancement capable of improving the quality of digital images. The method combines tree search theory, and in particular the Monte Carlo Tree Search (MCTS) algorithm, with deep reinforcement learning. Given as input a low-light image, TreEnhance produces as output its enhanced version together with the sequence of image editing operations used to obtain it. During the training phase, the method repeatedly alternates two main phases: a generation phase, where a modified version of MCTS explores the space of image editing operations and selects the most promising sequence, and an optimization phase, where the parameters of a neural network, implementing the enhancement policy, are updated. Two different inference solutions are proposed for the enhancement of new images: one is based on MCTS and is more accurate but more time and memory consuming; the other directly applies the learned policy and is faster but slightly less precise. As a further contribution, we propose a guided search strategy that "reverses" the enhancement procedure that a photo editor applied to a given input image. Unlike other methods from the state of the art, TreEnhance does not pose any constraint on the image resolution and can be used in a variety of scenarios with minimal tuning. We tested the method on two datasets: the Low-Light dataset and the Adobe Five-K dataset obtaining good results from both a qualitative and a quantitative point of view.