论文标题

对比度学习,并增强了记忆

Contrastive Learning with Boosted Memorization

论文作者

Zhou, Zhihan, Yao, Jiangchao, Wang, Yanfeng, Han, Bo, Zhang, Ya

论文摘要

自我监督的学习在表示视觉和文本数据的表示方面取得了巨大的成功。但是,当前的方法主要在经过良好的数据集中验证,这些数据集未显示现实世界的长尾分布。在损失的角度或模型观点中,重新平衡的重新平衡是为了考虑自我监督的长尾学习的最新尝试,类似于被监督的长尾学习中的范式。然而,没有标签的帮助,由于尾巴样品发现或启发式结构设计的限制,这些探索并未显示出预期的明显希望。与以前的工作不同,我们从替代角度(即数据的角度)探索了这个方向,并提出了一种新颖的增强对比度学习(BCL)方法。具体而言,BCL利用深度神经网络的记忆效果自动推动对比学习中样本视图的信息差异,这更有效地增强了标签 - 诺维尔环境中的长尾学习。对一系列基准数据集进行的广泛实验证明了BCL对几种最新方法的有效性。我们的代码可在https://github.com/mediabrain-sjtu/bcl上找到。

Self-supervised learning has achieved a great success in the representation learning of visual and textual data. However, the current methods are mainly validated on the well-curated datasets, which do not exhibit the real-world long-tailed distribution. Recent attempts to consider self-supervised long-tailed learning are made by rebalancing in the loss perspective or the model perspective, resembling the paradigms in the supervised long-tailed learning. Nevertheless, without the aid of labels, these explorations have not shown the expected significant promise due to the limitation in tail sample discovery or the heuristic structure design. Different from previous works, we explore this direction from an alternative perspective, i.e., the data perspective, and propose a novel Boosted Contrastive Learning (BCL) method. Specifically, BCL leverages the memorization effect of deep neural networks to automatically drive the information discrepancy of the sample views in contrastive learning, which is more efficient to enhance the long-tailed learning in the label-unaware context. Extensive experiments on a range of benchmark datasets demonstrate the effectiveness of BCL over several state-of-the-art methods. Our code is available at https://github.com/MediaBrain-SJTU/BCL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源