论文标题

使用参数化物理知情神经网络中多孔介质传输的不确定性量化

Uncertainty Quantification for Transport in Porous media using Parameterized Physics Informed neural Networks

论文作者

Gasmi, Cedric Fraces, Tchelepi, Hamdi

论文摘要

我们提出了物理知情神经网络(P-PINN)方法的参数化,以解决储层工程问题中不确定性量化的问题。我们证明了异质多孔培养基中不混溶的两个相流动位移(Buckley-Leverett问题)的方法。储层特性(孔隙率,渗透率)被视为随机变量。这些特性的分布会影响动态特性,例如流体饱和,前传速度或突破性时间。我们探索并使用网络插值复杂高维函数的能力。我们观察到,由偏微分方程的随机处理产生的其他维度倾向于产生利益量(分布参数)的更平稳的解决方案,该溶液被证明可以改善PINN的性能。我们显示,提供了不确定性空间的适当参数化,Pinn可以产生与集合实现和随机力矩紧密匹配的解决方案。我们演示了用于性质的均质和异质领域的应用。我们能够解决对经典方法可能具有挑战性的问题。这种方法产生了训练有素的模型,这些模型既可以对输入空间的变化更加强大,又可以与传统的随机抽样方法竞争。

We present a Parametrization of the Physics Informed Neural Network (P-PINN) approach to tackle the problem of uncertainty quantification in reservoir engineering problems. We demonstrate the approach with the immiscible two phase flow displacement (Buckley-Leverett problem) in heterogeneous porous medium. The reservoir properties (porosity, permeability) are treated as random variables. The distribution of these properties can affect dynamic properties such as the fluids saturation, front propagation speed or breakthrough time. We explore and use to our advantage the ability of networks to interpolate complex high dimensional functions. We observe that the additional dimensions resulting from a stochastic treatment of the partial differential equations tend to produce smoother solutions on quantities of interest (distributions parameters) which is shown to improve the performance of PINNS. We show that provided a proper parameterization of the uncertainty space, PINN can produce solutions that match closely both the ensemble realizations and the stochastic moments. We demonstrate applications for both homogeneous and heterogeneous fields of properties. We are able to solve problems that can be challenging for classical methods. This approach gives rise to trained models that are both more robust to variations in the input space and can compete in performance with traditional stochastic sampling methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源