论文标题

椭圆曲线的Gromov-witten潜力的公式

A formula for the Gromov-Witten potential of an elliptic curve

论文作者

Buryak, Alexandr

论文摘要

Okounkov和Pandharipande在2006年获得了任何平滑射击曲线的Gromov-witten不变性算法。他们在2006年获得了具有某些Hurwitz数字的固定不变性,然后对Virasoro类型的构成构成固定不变性,并允许确定所有其他Gromov-Witten Invariants over-Witten Invariants of the Stations over over over over over oferty over。在椭圆曲线的情况下,我们表明这些Virasoro类型的约束可以明确解决,从而使Gromov-Witten的全不变性势能达到非常明确的公式。

An algorithm to determine all the Gromov-Witten invariants of any smooth projective curve was obtained by Okounkov and Pandharipande in 2006. They identified stationary invariants with certain Hurwitz numbers and then presented Virasoro type constraints that allow to determine all the other Gromov-Witten invariants in terms of the stationary ones. In the case of an elliptic curve, we show that these Virasoro type constraints can be explicitly solved leading to a very explicit formula for the full Gromov-Witten potential in terms of the stationary invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源