论文标题

内尔兹布鲁克表面,沙鲁蛋白变性和曲折镜:桥接广义的calabi-yau结构

Hirzebruch Surfaces, Tyurin Degenerations and Toric Mirrors: Bridging Generalized Calabi-Yau Constructions

论文作者

Berglund, Per, Hübsch, Tristan

论文摘要

构建卡拉比YAU歧管以及相关的非几何配方的方式有很多不同的方式与弦乐压缩有关。在展示这种多样性时,我们讨论了$ \ Mathbb {p}^n \ times \ times \ mathbb {p}^1 $的明确变形家族,这些家族具有离散不同的Hirzebruch Hypersurfaces的属性。然后使用这种精确的同构来研究其一些特殊的感兴趣的特殊分裂,尤其是其calabi-yau子空间的次要变形家族。特别是,上述大多数所谓的Hirzebruch卷轴是非fano,其(常规)Calabi-yau Hypersurfaces是胸甲蛋白脱位,但通过特殊理性截面以及对镜模型转换构建的特殊概括的特殊理性截面的新颖(Laurent)变形。这种双向物质嵌入还揭示了不同的感谢您的紫色空间之间的新型变形连接,也揭示了感兴趣的各种分隔线,包括其calabi-yau子空间。

There is a large number of different ways of constructing Calabi-Yau manifolds, as well as related non-geometric formulations, relevant in string compactifications. Showcasing this diversity, we discuss explicit deformation families of discretely distinct Hirzebruch hypersurfaces in $\mathbb{P}^n \times \mathbb{P}^1$ and identify their toric counterparts in detail. This precise isomorphism is then used to investigate some of their special divisors of interest, and in particular the secondary deformation family of their Calabi-Yau subspaces. In particular, most of the above so called Hirzebruch scrolls are non-Fano, and their (regular) Calabi-Yau hypersurfaces are Tyurin-degenerate, but admit novel (Laurent) deformations by special rational sections as well as a sweeping generalization of the transposition construction of mirror models. This bi-projective embedding also reveals a novel deformation connection between distinct toric spaces, and so also the various divisors of interest including their Calabi-Yau subspaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源