论文标题
通过预训练和对比学习的新意图发现
New Intent Discovery with Pre-training and Contrastive Learning
论文作者
论文摘要
新的意图发现旨在从用户话语中揭示新的意图类别,以扩展一组支持的意图类别。这是实用对话系统开发和服务扩展的关键任务。尽管它很重要,但在文献中仍未探索这个问题。现有方法通常依赖大量标记的话语,并采用伪标记的方法来表示学习和聚类,这些方法具有标签密集型,效率低下且不准确。在本文中,我们为新意图发现的两个重要的研究问题提供了新的解决方案:(1)如何学习语义话语表示以及(2)如何更好地群集。特别是,我们首先提出了一种多任务预训练策略,以利用丰富的未标记数据以及外部标记的数据进行表示。然后,我们设计了一种新的对比损失,以利用未标记的数据中的自我探讨信号进行聚类。对三个意图识别基准的广泛实验证明了我们提出的方法的高效性,在无监督和半监督场景中,通过很大的边缘优于最先进的方法。源代码将在https://github.com/zhang-yu-wei/mtp-clnn上找到。
New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes. It is a critical task for the development and service expansion of a practical dialogue system. Despite its importance, this problem remains under-explored in the literature. Existing approaches typically rely on a large amount of labeled utterances and employ pseudo-labeling methods for representation learning and clustering, which are label-intensive, inefficient, and inaccurate. In this paper, we provide new solutions to two important research questions for new intent discovery: (1) how to learn semantic utterance representations and (2) how to better cluster utterances. Particularly, we first propose a multi-task pre-training strategy to leverage rich unlabeled data along with external labeled data for representation learning. Then, we design a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering. Extensive experiments on three intent recognition benchmarks demonstrate the high effectiveness of our proposed method, which outperforms state-of-the-art methods by a large margin in both unsupervised and semi-supervised scenarios. The source code will be available at https://github.com/zhang-yu-wei/MTP-CLNN.