论文标题

减轻多个下降:风险单调化的模型不足的框架

Mitigating multiple descents: A model-agnostic framework for risk monotonization

论文作者

Patil, Pratik, Kuchibhotla, Arun Kumar, Wei, Yuting, Rinaldo, Alessandro

论文摘要

几种常用预测程序的最新经验和理论分析表明,高维度的风险行为特有,称为双/多重下降,其中渐近风险是特征数量或参数与样本量的限制纵横比的非单调函数。为了减轻这种不良行为,我们基于交叉验证开发了风险单调化的一般框架,该框架将其作为输入作为通用的预测程序,并返回修改后的程序,该过程在限制倍数比以外的样本外预测风险是渐近地单调的。作为我们框架的一部分,我们提出了两种数据驱动的方法,即零和一步,它们分别类似于包装和增强,并表明,在非常温和的假设下,它们可以实现单调的渐近风险行为。我们的结果适用于各种各样的预测程序和损失功能,并且不需要明确的(参数)模型。我们用最小$ \ ell_2 $,$ \ ell_1 $ - 最小二乘预测过程的具体分析来体现我们的框架。作为我们分析中的成分之一,我们还得出了具有独立利益的分裂交叉验证的甲骨文风险不平等的新型添加剂和乘法形式。

Recent empirical and theoretical analyses of several commonly used prediction procedures reveal a peculiar risk behavior in high dimensions, referred to as double/multiple descent, in which the asymptotic risk is a non-monotonic function of the limiting aspect ratio of the number of features or parameters to the sample size. To mitigate this undesirable behavior, we develop a general framework for risk monotonization based on cross-validation that takes as input a generic prediction procedure and returns a modified procedure whose out-of-sample prediction risk is, asymptotically, monotonic in the limiting aspect ratio. As part of our framework, we propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and boosting, respectively, and show that, under very mild assumptions, they provably achieve monotonic asymptotic risk behavior. Our results are applicable to a broad variety of prediction procedures and loss functions, and do not require a well-specified (parametric) model. We exemplify our framework with concrete analyses of the minimum $\ell_2$, $\ell_1$-norm least squares prediction procedures. As one of the ingredients in our analysis, we also derive novel additive and multiplicative forms of oracle risk inequalities for split cross-validation that are of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源