论文标题
如何将耦合群集理论重归一致
How to renormalize coupled cluster theory
论文作者
论文摘要
耦合群集理论是解决量子多体问题的有吸引力的工具,因为其单打和双倍(CCSD)近似值是计算负担得起的,并且约为相关能量的90%。捕获剩余的10%,例如通过包含三元组,在数字上是昂贵的。在这里,我们假设短距离三体相关性占主导地位和 - 在麻风病[如何重新归一化schrödinger方程,arxiv:nucl-th/9706029] - 可以通过重新纳入三体接触相互作用来包括CCSD中的效果。我们在$^{16} $ o中重新统治了此联系人,并获得$^{24} $ O,$^{20-34} $ ne,$^{40,48} $ ca,$^{78} $ ni,$ ni,$ ni,$ ni,$^{90} $ zr zr,以及$ zr zr,以及$ zr,and $^ni} $ sn。
Coupled cluster theory is an attractive tool to solve the quantum many-body problem because its singles and doubles (CCSD) approximation is computationally affordable and yields about 90% of the correlation energy. Capturing the remaining 10%, e.g. via including triples, is numerically expensive. Here we assume that short-range three-body correlations dominate and - following Lepage [How to renormalize the Schrödinger equation, arXiv:nucl-th/9706029] - that their effects can be included within CCSD by renormalizing the three-body contact interaction. We renormalize this contact in $^{16}$O and obtain accurate CCSD results for $^{24}$O, $^{20-34}$Ne, $^{40,48}$Ca, $^{78}$Ni, $^{90}$Zr, and $^{100}$Sn.