论文标题

多个分配$ k $ -HUB中心的参数化近似算法

A parameterized approximation algorithm for the Multiple Allocation $k$-Hub Center

论文作者

Benedito, Marcelo P. L., Melo, Lucas P., Pedrosa, Lehilton L. C.

论文摘要

在多个分配$ k $ -HUB中心(ma $ k $ hc)中,给我们一个连接的边缘加权图$ g $,$ \ MATHCAL {C} $和HUB位置$ \ MATHCAL {h} $,其中$ {v(v(g) $ \ MATHCAL {D} \ subseteq \ Mathcal {C}^2 $和一个正整数$ K $。解决方案是一组hubs $ h \ subseteq \ mathcal {h} $ size $ k $的$,使每个需求$ $(a,b)$都可以通过以$ a $为$ a $的路径来满足,从而通过$ h $的某个顶点,结束于$ b $。目的是最大程度地减少路径的最大长度。我们表明,找到$(3-ε)$ - 近似值已经是平面图的NP-近似值。对于任意图,即使我们通过$ k $和最佳解决方案的值$ r $参数化,近似下限也具有。当参数组合$ k $和各种图形宽度(包括路径宽)时,精确的FPT算法也不太可能。为了面对这些硬度障碍,我们给出了$(2+ε)$ - 近似算法由树宽参数化,作为副产品,对于未加权的平面图,我们给出了$(2+ε)$ - 近似值 - 近似算法由$ k $ k $ $ k $和$ r $ chomemile comminity comminity commine commine commine commine comminity comminity。与经典位置问题相比,计算路径的长度取决于非本地决策。这将标准的动态编程算法不切实际,因此我们的算法仅使用本地信息近似此长度。我们希望这些想法在其他类似成本结构的问题中找到应用。

In the Multiple Allocation $k$-Hub Center (MA$k$HC), we are given a connected edge-weighted graph $G$, sets of clients $\mathcal{C}$ and hub locations $\mathcal{H}$, where ${V(G) = \mathcal{C} \cup \mathcal{H}}$, a set of demands $\mathcal{D} \subseteq \mathcal{C}^2$ and a positive integer $k$. A solution is a set of hubs $H \subseteq \mathcal{H}$ of size $k$ such that every demand $(a,b)$ is satisfied by a path starting in $a$, going through some vertex of $H$, and ending in $b$. The objective is to minimize the largest length of a path. We show that finding a $(3-ε)$-approximation is NP-hard already for planar graphs. For arbitrary graphs, the approximation lower bound holds even if we parameterize by $k$ and the value $r$ of an optimal solution. An exact FPT algorithm is also unlikely when the parameter combines $k$ and various graph widths, including pathwidth. To confront these hardness barriers, we give a $(2+ε)$-approximation algorithm parameterized by treewidth, and, as a byproduct, for unweighted planar graphs, we give a $(2+ε)$-approximation algorithm parameterized by $k$ and $r$. Compared to classical location problems, computing the length of a path depends on non-local decisions. This turns standard dynamic programming algorithms impractical, thus our algorithm approximates this length using only local information. We hope these ideas find application in other problems with similar cost structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源