论文标题

通过异性噪声模型识别患者特定的根本原因

Identifying Patient-Specific Root Causes with the Heteroscedastic Noise Model

论文作者

Strobl, Eric V., Lasko, Thomas A.

论文摘要

复杂的疾病是由许多因素引起的,即使在同一诊断类别中,患者之间可能有所不同。然而,一些潜在的根本原因可能会引发每个患者内部疾病的发展。因此,我们专注于鉴定患者特异性的疾病根本原因,我们将其等同于结构方程模型中外源误差项的样本特异性预测性。我们从线性设置概括到异质机噪声模型,其中$ y = m(x) + \varepsilonσ(x)$具有非线性函数$ m(x)$和$σ(x)$,分别代表条件平均值和平均值偏差。该模型保留了可识别性,但引入了非平凡的挑战,该挑战需要一种称为广义根因果推理(GRCI)的自定义算法才能正确提取错误项。 GRCI比现有替代方案更准确地恢复了患者特定的根部。

Complex diseases are caused by a multitude of factors that may differ between patients even within the same diagnostic category. A few underlying root causes may nevertheless initiate the development of disease within each patient. We therefore focus on identifying patient-specific root causes of disease, which we equate to the sample-specific predictivity of the exogenous error terms in a structural equation model. We generalize from the linear setting to the heteroscedastic noise model where $Y = m(X) + \varepsilonσ(X)$ with non-linear functions $m(X)$ and $σ(X)$ representing the conditional mean and mean absolute deviation, respectively. This model preserves identifiability but introduces non-trivial challenges that require a customized algorithm called Generalized Root Causal Inference (GRCI) to extract the error terms correctly. GRCI recovers patient-specific root causes more accurately than existing alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源