论文标题

多行为建议的级联剩余图形卷积网络

Cascading Residual Graph Convolutional Network for Multi-Behavior Recommendation

论文作者

Yan, Mingshi, Cheng, Zhiyong, Gao, Chen, Sun, Jing, Liu, Fan, Sun, Fuming, Li, Haojie

论文摘要

多行为建议利用多种类型的用户项目交互来减轻传统模型所面临的数据稀疏问题,这些模型通常仅利用一种类型的交互进行推荐。在实际情况下,用户经常采取一系列操作与项目互动,以获取有关该项目的更多信息,从而准确评估项目是否适合个人喜好。这些相互作用行为通常遵守一定的顺序,并且不同的行为揭示了用户对目标项目的不同信息或方面。大多数现有的多行为推荐方法采用该策略,首先从不同行为中提取信息,然后将其融合以进行最终预测。但是,他们尚未利用不同行为之间的联系来学习用户偏好。此外,他们经常引入复杂的模型结构和更多参数来建模多种行为,从而在很大程度上增加了空间和时间的复杂性。在这项工作中,我们提出了一个名为“级联残留图卷积网络”(简称CRGCN)的轻量级多行为建议模型,该模型可以在不引入任何其他参数的情况下明确利用不同行为之间的连接到嵌入式学习过程中。特别是,我们设计了一个级联的残留图卷积网络结构,该结构使我们的模型能够通过不断精炼不同类型的行为的用户嵌入来学习用户偏好。采用多任务学习方法来基于不同的行为共同优化我们的模型。两个实际基准数据集的广泛实验结果表明,CRGCN可以大大优于最先进的方法。进一步的研究还分析了利用不同数量和订单对最终绩效的多行为的影响。

Multi-behavior recommendation exploits multiple types of user-item interactions to alleviate the data sparsity problem faced by the traditional models that often utilize only one type of interaction for recommendation. In real scenarios, users often take a sequence of actions to interact with an item, in order to get more information about the item and thus accurately evaluate whether an item fits personal preference. Those interaction behaviors often obey a certain order, and different behaviors reveal different information or aspects of user preferences towards the target item. Most existing multi-behavior recommendation methods take the strategy to first extract information from different behaviors separately and then fuse them for final prediction. However, they have not exploited the connections between different behaviors to learn user preferences. Besides, they often introduce complex model structures and more parameters to model multiple behaviors, largely increasing the space and time complexity. In this work, we propose a lightweight multi-behavior recommendation model named Cascading Residual Graph Convolutional Network (CRGCN for short), which can explicitly exploit the connections between different behaviors into the embedding learning process without introducing any additional parameters. In particular, we design a cascading residual graph convolutional network structure, which enables our model to learn user preferences by continuously refining user embeddings across different types of behaviors. The multi-task learning method is adopted to jointly optimize our model based on different behaviors. Extensive experimental results on two real-world benchmark datasets show that CRGCN can substantially outperform state-of-the-art methods. Further studies also analyze the effects of leveraging multi-behaviors in different numbers and orders on the final performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源