论文标题

球形之间的双旋统均匀多项式图

Biharmonic homogeneous polynomial maps between spheres

论文作者

Ambrosie, Rareş, Oniciuc, Cezar, Ou, Ye-Lin

论文摘要

在本文中,我们首先证明了euclidean Spheres Biharmonic映射的特征性公式,并且作为一种应用,我们从一个平坦的$ 2 $ -Dimensional torus $ \ Mathbb {t} $中构建了一个Biharmonic Map家族,以$ 3 $ 3 $ 3 $ dimensional eucmensional euclidean spheys euclidean sphere $ \ mathbb $ \ mathbb {然后,对于由相同程度的均质多项式给出的球之间的特殊情况,我们为其替补场找到了更具体的形式。此外,我们将此公式应用于度为$ 2 $的情况下,并从$ \ Mathbb {s}^1 $到$ \ Mathbb {s}^n $,$ n \ geq 2 $中从$ \ mathbb {s}^1 $到$ \ geq 2 $,从$ \ mathbb { $ \ mathbb {s}^m $ to $ \ mathbb {s}^3 $,$ m \ geq 2 $。

In this paper we first prove a characterization formula for biharmonic maps in Euclidean spheres and, as an application, we construct a family of biharmonic maps from a flat $2$-dimensional torus $\mathbb{T}$ into the $3$-dimensional unit Euclidean sphere $\mathbb{S}^3$. Then, for the special case of maps between spheres whose components are given by homogeneous polynomials of the same degree, we find a more specific form for their bitension field. Further, we apply this formula to the case when the degree is $2$, and we obtain the classification of all proper biharmonic quadratic forms from $\mathbb{S}^1$ to $\mathbb{S}^n$, $n \geq 2$, from $\mathbb{S}^m$ to $\mathbb{S}^2$, $m \geq 2$, and from $\mathbb{S}^m$ to $\mathbb{S}^3$, $m \geq 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源