论文标题

由于电场梯度,在Cu表面上有偏见的自扩散

Biased self-diffusion on Cu surface due to electric field gradients

论文作者

Kimari, Jyri, Wang, Ye, Kyritsakis, Andreas, Zadin, Veronika, Djurabekova, Flyura

论文摘要

在强电场下,即使在超高真空中,流过血浆的强电流也可以连接两个金属表面。尽管进行了数十年的研究,但导致真空弧线崩溃的事件链迄今未知。以前,我们表明,暴露在强场上的高含量纳米电场会因田间发射电流和最终融化而加热,从而蒸发中性原子,这些原子可能有助于等离子体的积累。 在这项工作中,我们通过分子动力学模拟研究表面扩散是否因电场梯度的存在而偏置是否可以提供足够的原子向纳米托管顶部的质量传输,以维持中性供应血浆的供应。为了达到必要的时间尺度并在MD中添加电场,我们利用了集体变量〜驱动的超基因加速度和耦合到有限元网格的新型组合。在我们的模拟中,我们观察到在Cu表面上有偏见的自扩散,这可能有助于连续补充颗粒发射纳米尺。这种机制意味着需要降低容易受到真空弧的设备的表面扩散速率。寻找合适的合金或表面处理,阻碍观察到的偏置扩散可以指导未来设备的设计,并大大提高其效率。

Under strong electric fields, an arc of strong current flowing through plasma can link two metal surfaces even in ultra high vacuum. Despite decades of research, the chain of events leading to vacuum arc breakdowns is hitherto unknown. Previously we showed that a tall and sharp Cu nanotip exposed to strong electric fields heats up by field emission currents and eventually melts, evaporating neutral atoms that can contribute to plasma buildup. In this work, we investigate by means of molecular dynamics simulations whether surface diffusion biased by the presence of an electric field gradient can provide sufficient mass transport of atoms toward the top of the nanotip to maintain supply of neutrals for feeding plasma. To reach the necessary timescales and to add electric field in MD, we utilized a novel combination of collective variable~-driven hyperdynamics acceleration and coupling to a finite element mesh. In our simulations, we observed biased self-diffusion on Cu surfaces, that can contribute to the continuous replenishment of particle-emitting nanotips. This mechanism implies a need to reduce the rate of surface diffusion in devices that are susceptible to vacuum arcs. Finding suitable alloys or surface treatments that hinder the observed biased diffusion could guide the design of future devices, and greatly improve their efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源