论文标题

调整光学激发以控制磁性天源成核

Tailoring Optical Excitation to Control Magnetic Skyrmion Nucleation

论文作者

Kern, Lisa-Marie, Pfau, Bastian, Schneider, Michael, Gerlinger, Kathinka, Deinhart, Victor, Wittrock, Steffen, Sidiropoulos, Themistoklis, Engel, Dieter, Will, Ingo, Günther, Christian M., Litzius, Kai, Wintz, Sebastian, Weigand, Markus, Büttner, Felix, Eisebitt, Stefan

论文摘要

在铁磁多层中,单个激光脉冲在光学成核阈值上方的平静阈值上方会产生磁性天空,该磁性天空脉冲随机分布在激光点的区域上。但是,为了研究天空的动态及其在未来的数据技术中的应用,天空成核位点的可控定位至关重要。在这里,可以证明可以设计薄磁性膜后面的图案化反射罩,以局部定制到达的光激发幅度,从而在纳米尺度上在空间控制的天空中。使用X射线显微镜,在两个样品几何形状中研究了纳米平底的后侧铝膜对光激发的影响,这些样品几何形状具有不同的底物和磁性CO/PT多层层的层序列。令人惊讶的是,在更改此序列时,掩模对抑制或增强Skymion成核的影响会逆转。此外,光学近场增强功能另外影响了核定天空的空间排列。使用激光激发的空间调制,以及在两个样品几何形状中的界面上进行以下热传递来解释这些观察结果。结果证明了一种可靠的方法,可以将纳米尺度的空间控制添加到超快时间尺度上的光学诱导磁化过程中。

In ferromagnetic multilayers, a single laser pulse with a fluence above an optical nucleation threshold can create magnetic skyrmions, which are randomly distributed over the area of the laser spot. However, in order to study the dynamics of skyrmions and for their application in future data technology, a controllable localization of the skyrmion nucleation sites is crucial. Here, it is demonstrated that patterned reflective masks behind a thin magnetic film can be designed to locally tailor the optical excitation amplitudes reached, leading to spatially controlled skyrmion nucleation on the nanometer scale. Using x-ray microscopy, the influence of nanopatterned back-side aluminum masks on the optical excitation is studied in two sample geometries with varying layer sequence of substrate and magnetic Co/Pt multilayer. Surprisingly, the masks' effect on suppressing or enhancing skymion nucleation reverses when changing this sequence. Moreover, optical near-field enhancements additionally affect the spatial arrangement of the nucleated skyrmions. Simulations of the spatial modulation of the laser excitation, and the following heat transfer across the interfaces in the two sample geometries are employed to explain these observations. The results demonstrate a reliable approach to add nanometer-scale spatial control to optically induced magnetization processes on ultrafast timescales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源