论文标题
分子图上的三角对比学习
Triangular Contrastive Learning on Molecular Graphs
论文作者
论文摘要
最近的对比学习方法已证明在各种任务中有效,学习可概括的表示形式不变,从而导致了最新的表现。关于在自我监督学习中使用的大型非标签数据的多方面性质,而大多数现实字的下游任务都使用单一格式的数据,这是一个可以训练单个模式来从其他方式学习各种观点的多模式框架是一个重要的挑战。在本文中,我们提出了Tricl(三角形对比学习),这是三座对比学习的通用框架。 TRICL利用三角形区域损失,这是一种新型的形式形式的对比损失,通过同时对比阳性和负三重态的区域,从而了解了嵌入空间的角几何形状。从一致性和均匀性方面,对嵌入空间的系统观察表明,三角形区域损失可以通过角度区分方式来解决线圈问题。我们的实验结果还表明,Tricl在下游特性预测的下游任务上表现出色,这意味着嵌入空间的优势确实使下游任务的性能受益。
Recent contrastive learning methods have shown to be effective in various tasks, learning generalizable representations invariant to data augmentation thereby leading to state of the art performances. Regarding the multifaceted nature of large unlabeled data used in self-supervised learning while majority of real-word downstream tasks use single format of data, a multimodal framework that can train single modality to learn diverse perspectives from other modalities is an important challenge. In this paper, we propose TriCL (Triangular Contrastive Learning), a universal framework for trimodal contrastive learning. TriCL takes advantage of Triangular Area Loss, a novel intermodal contrastive loss that learns the angular geometry of the embedding space through simultaneously contrasting the area of positive and negative triplets. Systematic observation on embedding space in terms of alignment and uniformity showed that Triangular Area Loss can address the line-collapsing problem by discriminating modalities by angle. Our experimental results also demonstrate the outperformance of TriCL on downstream task of molecular property prediction which implies that the advantages of the embedding space indeed benefits the performance on downstream tasks.