论文标题
与厄贡驾驶系统的非均匀双曲随机地图的相关性的淬灭衰减
Quenched decay of correlations for nonuniformly hyperbolic random maps with an ergodic driving system
论文作者
论文摘要
在本文中,我们研究了由崇高的自动形态驱动的随机塔图。我们证明了塔式尾巴的塔地图的指数相关性衰减。我们的技术基于在随机塔上定义的合适的功能锥,该功能锥在适当的转移操作员的作用下相对于希尔伯特度量标准收缩。我们应用结果来获得几种非IID随机动力学系统的淬灭指数相关性衰减,包括洛伦兹地图和Axiom A吸引子的小型随机扰动。
In this article we study random tower maps driven by an ergodic automorphism. We prove quenched exponential correlations decay for tower maps admitting exponential tails. Our technique is based on constructing suitable cones of functions, defined on the random towers, which contract with respect to the Hilbert metric under the action of appropriate transfer operators. We apply our results to obtain quenched exponential correlations decay for several non-iid random dynamical systems including small random perturbations of Lorenz maps and Axiom A attractors.