论文标题

激光器的量子密度矩阵理论,无绝热消除人群反转:在B类极限中过渡到激光

Quantum density matrix theory for a laser without adiabatic elimination of the population inversion: transition to lasing in the class-B limit

论文作者

Yacomotti, Alejandro M., Denis, Zakari, Biella, Alberto, Ciuti, Cristiano

论文摘要

尽管对微型和纳米层具有巨大的技术兴趣,但令人惊讶的是,迄今为止,没有B级量子密度 - 密度 - 密度 - 矩阵模型,能够准确地描述统一理论中的相干性和光子相关性。在B类Lasers $ - 适用于室温下的大多数固态激光器的$ - $ - $ - $,宏观极化衰减速率大于腔阻尼率,进而超过了上层人口衰减率。在这里,我们为通用B类激光器执行了密度 - 矩阵理论方法,并为光子的FOCK基础提供了光子和​​原子还原密度矩阵的封闭方程。这种相对简单的模型可以直接地在数值上集成,并展示从单原子光子抗启动到众所周知的S形输入激光发射和许多原子的超级繁殖的现象($ 1 \ leq g^{(2)(2)(2)(0)\ les semuty phots,以及来自较大的phot q $ q phots($ 1) $β\ sim1 $)达到热力学极限($ n \ gg1 $和$β\ sim 0 $)。基于对$ g^{(2)}(τ)$的分析,我们得出结论,超级波斯顿的波动显然与光子数中的松弛振荡有关。我们预测,放松振荡的强烈阻尼,原子数量较小至$ n \ sim 10 $。该模型可以研究B类激光器设备中的几个光子分叉和非经典光子相关性,还利用了相干耦合的纳米层阵列的量子描述。

Despite the enormous technological interest in micro and nanolasers, surprisingly, no class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory. In class-B lasers $-$applicable for most solid-state lasers at room temperature$-$, the macroscopic polarization decay rate is larger than the cavity damping rate which, in turn, exceeds the upper level population decay rate. Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons. Such a relatively simple model can be numerically integrated in a straightforward way, and exhibits all the expected phenomena, from one-atom photon antibunching, to the well-known S-shaped input-output laser emission and super-Poissonian autocorrelation for many atoms ($1\leq g^{(2)}(0)\leq 2$), and from few photons (large spontaneous emission factors, $β\sim1$) to the thermodynamic limit ($N\gg1$ and $β\sim 0$). Based on the analysis of $g^{(2)}(τ)$, we conclude that super-Poissonian fluctuations are clearly related to relaxation oscillations in the photon number. We predict a strong damping of relaxation oscillations with an atom number as small as $N\sim 10$. This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源