论文标题
审查龙虾图:使用NASA空间系外行星任务在广泛的二进制文件中寻找看不见的同伴
Vetting the Lobster Diagram: Searching for Unseen Companions in Wide Binaries using NASA Space Exoplanet Missions
论文作者
论文摘要
在过去的十年中,由于Gaia Mission的数据释放了数据,已知宽的二进制系统的数量已成倍扩大。这些宽的二进制系统中的一些实际上是高阶倍数,其中一个组件是未解决的二进制本身。搜索这些系统的一种方法是识别系统中的过量组件。在这项研究中,我们检查了4947 K+K宽的二进制对,并量化了组件的相对颜色和发光度,以找到证据以获取其他未解决的伴侣。该方法在图中最好说明我们称为“龙虾图”。为了确认已确定的过多的组件是近距离二进制系统,我们与苔丝,K2和开普勒档案群交叉匹配宽二进制组,并在光曲线中搜索蚀的迹象和快速的恒星旋转调制。我们发现,$ 78.9 \%\ pm20.7 \%$ $ $ $ $ $ $包含黯然失色的系统的$ $ $在“龙虾图”中被确定为过多的,而$ 73.5 \%\%\ pm12.4 \%\%\%\%$ $ $ $ $ $ $ $ $ $ $ $ $ $ compoction($ p <5 $)也显示了一个杂乱的天数($ p <5 $)。从这些结果中,我们计算了对K+K宽二进制$ 40.0 \%\%\ pm1.6 \%$的高阶多重分数的修订后限制。我们还检查了高阶多重分数,这是投影的物理分离和金属性的函数。该馏分与投影的物理分离的函数异常恒定,而我们没有统计学上的显着证据表明该分数随金属性而变化。
Over the past decade, the number of known wide binary systems has exponentially expanded thanks to the release of data from the Gaia Mission. Some of these wide binary systems are actually higher-order multiples, where one of the components is an unresolved binary itself. One way to search for these systems is by identifying overluminous components in the systems. In this study, we examine 4947 K+K wide binary pairs from the SUPERWIDE catalog and quantify the relative color and luminosity of the components to find evidence for additional, unresolved companions. The method is best illustrated in a graph we call the "Lobster diagram." To confirm that the identified overluminous components are close binary systems, we cross-match our wide binaries with the TESS, K2 and Kepler archives and search for the signs of eclipses and fast stellar rotation modulation in the light curves. We find that $78.9\%\pm20.7\%$ of the wide binaries which contain an eclipsing system are identified to be overluminous in the "Lobster Diagram" and $73.5\%\pm12.4\%$ of the wide binaries which contain a component showing fast rotation ($P<5$) days also show an overluminous component. From these results, we calculate a revised lower limit on the higher-order multiplicity fraction for K+K wide binaries of $40.0\%\pm1.6\%$. We also examine the higher-order multiplicity fraction as a function of projected physical separation and metallicity. The fraction is unusually constant as a function of projected physical separation while we see no statistically significant evidence that the fraction varies with metallicity.